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Abstract It is frequently claimed that green algae are
intrinsically more productive, often by orders of magnitude,
than higher plants commonly grown as crops for food.
There is no firm evidence for this belief. On the contrary,
there is much experience which shows that algae are not
more but less productive. Under optimal conditions, all
green organisms photosynthesize at the same rate in low
light and, whilst commonly cultivated ‘sun’ species show
some differences in rate in full light, these do not translate
into widely different rates of accumulation of biomass.
Accordingly, irrespective of crop, one acre of land, pond or
bioreactor, can annually yield about enough biomass to fuel
one motor vehicle or meet the calorific requirement of
several people. This amount of biomass is not sufficient to
make other than a very small contribution to our present
road transport requirements and yet contributes significant-
ly to global food shortages and rising prices. Reliable
evidence also suggests that, if all of the inputs are taken
into account, the net energy gain of liquid biofuels, derived
either from algae or terrestrial crops, is either very modest
or non-existent and will therefore bring about little or no
sparing of carbon dioxide emissions.
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Photosynthetic efficiency

Zhu et al. (2008) state that “A key starting point for
identifying and evaluating biotechnology targets for im-
proving photosynthetic solar conversion efficiency is a
critical re-examination of the maximum efficiency of
photosynthetic solar energy conversion that could theoret-
ically be achieved in managed ecosystems”. What then is
the greatest amount of light energy that could, in theory, be
converted into chemical energy by photosynthesis?

If, for purposes of calculation, we take the absorption of
solar energy by chlorophyll to be maximal at about 680 nm
and the chemical end-product of the Z-scheme and the
Benson–Calvin Cycle, to be a carbohydrate, the first
starting point is as follows. The Z-scheme calls for four
electrons to be propelled by four photons through each of
two photosystems for every molecule of O2 released from
water and every molecule of CO2 incorporated into ‘CH2O’
(Fig. 1).

A photon mole of red light, with a wavelength of about
680 nm, has an energy content (Walker 2000) of about
42 kcal (176 kJ). Burn one gram molecule of C6H12O6 in a
calorimeter and 672 kcal is released as heat. The formation
of one ‘CH2O’ therefore requires an input of at least 672/
6=112 kcal (468 kJ) and, when this is supplied by eight
photons of red light, the arithmetic becomes 112/(8×42)×
100=33%. However, rather less than 50% of sunlight is
photosynthetically active radiation (PAR). The energy
content of an average photon mole of visible light in this
range is about 50 kcal (209 kJ) and, using the leaf-disk
electrode (Delieu and Walker 1981), the mean quantum
requirement for thirty seven C3 species was found to be
9.4 (Bjorkman and Demmig 1987). This has been
repeatedly confirmed (see, e.g., Walker 1987, Walker
1989, Walker and Osmond 1986, Seaton and Walker
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1990). So, introducing these values, we can arrive at 112/
(9.4×50 )×0.5×100=11.9%.

It cannot be too strongly emphasized that 11.9% (cf.
Radmer and Kok 1977) is an unequivocal theoretical
maximum that will never be realized by a growing crop
of whatever nature even when all adverse factors such as
disease, predation, inadequate inorganic nutrients and sub-
optimal water are disregarded. This is because the actual
quantum yield (i.e., the reciprocal of the quantum require-
ment) invariably decreases as the photon flux density
approaches light saturation (at about one fifth of full
sunlight for C3 species) and the fact that environmental
factors such as temperature (Spalding et al. 1980) vary
during daylight hours and are rarely optimal. We can
however approach a rather more realistic maximum figure
of photosynthetic efficiency (photon energy converted into
biomass energy) of about 4.5% for C3 plants or microalgae
by using “educated guesswork” (Boardman 1980, Edwards
and Walker 1983, Walker 1992a, Benemann and Oswald
1996) and detailed consideration of the partial reactions
involved (Walker 2000, Barber and Archer 2004, Zhu et al.
2008). Uncritical acceptance of uncorrected photosynthetic
efficiencies of about 10% or even higher (Pirt 1986)
inevitably leads to exaggerated estimates of present and
future biofuel productivity. For example Huntley and
Redalje (2007) state that “the annually averaged rate of
achieved microbial oil production from Haematococcus
pluvialis is equivalent to >420 GJ ha−1 y−1, which exceeds
the most optimistic estimates of biofuel production from
plantations of terrestrial “energy crops”. Yet, if 500 J is
taken as an arbitrary value for the PAR of “full sunlight”
(Edwards and Walker 1983 and see below) and a crop
utilizes 1% of this energy this equates to about 630 GJ ha−1

y−1 .This suggests that the annual biofuel production of
>420 GJ ha−1 by H. pluvialis is less rather than greater than

the best terrestrial crops. Similarly, it makes untenable the
often-cited conclusion by Longhurst et al. (1995) that “the
productivity of photosynthetic microbes in nature, on an
areal basis, exceeds that of terrestrial plants by approxi-
mately one order of magnitude”. Indeed if this were correct,
it would imply an efficiency of about 20%.

As important in this context is how to relate about 4.5%
for C3 plants (and 6% for C4 plants, Zhu et al. 2008) to
grams of biomass per square meter per day. Assuming a
mean wavelength of 575 nm for the PAR component of
solar radiation Edwards and Walker (1983) took an
arbitrary value of 500 J (= 500 W s=0.119 kcal m−2 s−1)
for the photosynthetically active component (PAR) of “full
sunlight” for the U.K. This is equivalent to 0.119×60×60×
12=5141 kcal m−2 for a 12-h day.

According a nominal value of 4.25 kcal g−1 for plant
material (rather than 3.7 for carbohydrate) 5,141/4.25=
1,210 g/12-h day. One percent of this is 12.1 g and 4.5%
is 54.45, and for carbohydrate it would be 62.5 g m−2/
12-h day. The corresponding figure for PAR for the United
States, based on a more accurate 48.7% of total incident
solar radiation (Zhu et al. 2008) would be equivalent to
0.1164×60×60×12=5028 kcal m−2 for a 12-h day and this,
in turn, equates to 5,028/4.25=1183 g/12-h day and values
of 11.83 and 54.4 for 1% and 4.6% respectively.

Very similar values can be derived from calculations
based on the actual light received during a growing season.
Thus, solar radiation in Tucson, Arizona from 1988 to 2001
occurred in May and June near the summer solstice and was
“as much as 1,110 Watts” (J s−1) per square meter (Kania
and Giacomelli 2000). This would equate to about 13 g
day−1 for 1% light utilization efficiency at the peak of the
Tucson growing season. It also points up the limitations of
attempting to read too much into yields calculated on the
annual values of insolation for an entire continent. Thus, on
June 21st in Tucson (latitude 32°) the day length is not 12
but 14 h and 15 min whereas where I live, in England’s
most northern county (latitude 55°) the day length on June
21st is about 18 h. This would increase the theoretical 1%
value (based on a 12-h day) from 12 to 18 g if it were not
for the fact that, in earliest light and after the sun has set,
the incident photon flux density (PFD) might well be below
the light compensation point at which photosynthetic
carbon dioxide gain is matched by respiratory loss (see
also “Temperature limitations” section below).

Additionally, although at low light there is a linear
relation between ‘light intensity’ (PFD) and rate of
photosynthesis, this is not so above about one fifth of full
sunlight. This in itself diminishes the usefulness of
attempted comparisons between crop yields in areas of
high- and low light intensity. Moreover, even in augmented
CO2, many C3 higher plants (Edwards and Walker 1983,
Walker 1992a, Ort and Long 2003, Long et al. 2006,) and

Fig. 1 From Walker (1992b)
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microalgae (Vonshak et al. 1989) become 'light saturated'
well below one quarter of full sunlight (Fig. 2).

Moreover, it is becoming increasingly clear (below) that
green plants are even more able, than is sometimes
recognized, to adjust both their photosynthetic capacity
and their growth to what is optimal in a given environment
(Walker 1995, Noctor and Foyer 1999, Edwards and
Walker 2004).

Temperature limitations

The maximum conversion efficiency of solar energy to
biomass of 4.6% for C3 photosynthesis determined by Zhu
et al. (2008) was specified to be at 30°C and “today’s
380 ppm atmospheric [CO2]”. It is a matter of common
observation that no ‘higher’ plants or microalgae grow
much when it is cold but the responses of photosynthesis
and respiration to temperature (Labate et al. 1990) are more
complex. Respiration increases with temperature in an
exponential manner within the 0–50°C range until a ceiling
is imposed by genetic and environmental constraints.
Photosynthesis by algae (Emerson 1929) and spinach
chloroplasts (Baldry et al. 1966) is characterized by high
Q10s at low temperatures so that its rate, over the 0°C to 20°
C range, increases with temperature in a linear rather than
an exponential fashion. Most leaves equilibrate with
ambient temperature very quickly. Conversely, because of
their greater heat capacity, when open algal ponds are
situated in places where low night temperatures are
combined with relatively abrupt transition from darkness

to full light, photosynthesis is slow to start in the morning
and respiration slow to diminish in the evening.

This again emphasizes the fact that, while a value of
about 60 g m−2 day−1 (and an annual value often half this)
may constitute the absolute maximum rate of accumulation
of biomass in the field, this value will rarely, if ever, even
be approached in practice.

Nonsensical calculations far beyond reality?

There are obvious dangers in attempting to extrapolate
(to tons of biomass/ha/year) from rates of photosynthesis
measured in μmol m−2 s−1 or from growth measured in g
m−2 day−1. For example, remarkable statements have been
issued by, or on behalf of companies such as GreenFuels
Technologies, who claimed (Pulz 2007) that they “were
able to successfully grow algae at APS' Redhawk natural
gas power plant at levels 37 times higher than corn and 140
times higher than soybeans—the two primary crops used
for biofuels … an average productivity of 98 g.m−2.d−1

(ashfree, dry weight basis) and reaching a high peak value
of 174 g.m−2.d−1 surpassed previous lab growth rates and
exceeded all expectations going into the project. The results
provide evidence of the financial viability of using the
emissions of a power plant to grow algae for the exclusive
purpose of creating biofuels” (see, e.g., GreenFuels Online
2007)

These and similar claims, by some proponents of algae
mass culture, would appear to go far beyond exaggeration
into the realms of science fantasy. There is in fact no
credible evidence to support the contention that algae
produce much more biomass per unit area per unit time
than any other green organism. On the contrary, when
compared on the same basis, just as all plants (under
optimal conditions) photosynthesize at identical rates in
limiting light (Bjorkman and Demmig 1987), they photo-
synthesize at relatively similar rates in high light. For
example, sunflower (Helianthus annulus) has a reputation
for fast photosynthesis but, at the Robert Hill Institute at
Sheffield, P vs. E recordings of oxygen evolution were not
merely similar but identical to those made on spinach
(Spinacea oleracea) when leaves were taken from plants
grown side by side in the same glasshouse (Walker 1995).
Similarly, many hundreds of measurements (see, e.g.,
Walker 1995, Walker and Osmond 1986) have been made
with the leaf-disk electrode (Delieu and Walker 1981,
Walker 1987, 1989, 1997 on a miscellany of C3 species), in
Australia, Europe, and South East Asia by myself and
students who participated in UNEP courses; created and
inspired by the late David Hall (Rao 1999, Larson 2000).
These showed relatively moderate differences in the rate of
photosynthesis (at 25°C) around a mean of about 20 μmolFig. 2 Photoinhibition in Spirulina platensis
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m−2 s−1, but never varied by an order of magnitude nor
exceeded about 60 μmol m−2 s−1. When taken from the
same sites, on the same day, broadly similar categories,
such as C3 grasses or deciduous trees, showed considerably
less variation than corresponding measurements from
environmentally different sites in the same neighborhood
(Walker 1995). The extent to which such generalizations
can be usefully extended from higher plants to algae is, of
course, questionable. Oxygen evolution by Spirulina can be
as high as 700 μmol O2 mg−1 chlorophyll h−1 (Vonshak et
al. 1996) but there are long recognized problems (Nielsen
1957) in relating μmol mg−1 chlorophyll h−1 (by algae in
aqueous media) to μmol m−2 s−1 (by higher plants grown in
soil) which, like comparing chalk with cheese, are neither
merely a matter of arithmetic nor easily resolved by
experiment. Thus, in Fig. 2, the maximum rate for Spirulina
measured in a leaf-disk electrode was only about 20 μmol
O2 m

−2 s−1 but, whereas leaf disks retain the advantages of
complex internal architecture, algae (necessarily packed
closely together on an artificial support for this type of
measurement) will not, for example, enjoy the advantages
of short diffusion paths that they experience in aqueous
suspension.

Photosynthesis by single leaves and the growth of the
parent plant (Sachs 1887) are not, of course, synonymous
(see, e.g., Walker 1995). Nevertheless, while the annual
yields of conventional crops such as wheat, oats, barley and
potatoes grown in N. America, the United Kingdom and
Continental Europe differ in consequence of the consider-
able differences in altitude, latitude insolation, and daily
temperatures to which they are exposed, these differences
in yield are not large (cf. Walker 1995), possibly implying
some degree of homeostasis (cf. Noctor and Foyer 1999).
On average, the lowest main-crop potato yield in these
countries is about 35 t ha−1, the highest about 65 and the
great majority in the 40 to 55 t ha−1 range. (Haverkort 1990,
British Potato 2007, Potatoes 2007) This of course is not to
discount local differences in biomass consequent upon the
supply of water, nitrogenous fertilizers, informed agrono-
my, selection of favorable varieties and advances wrought
by conventional plant breeding or other forms of genetic
manipulation (Rosenberg et al. 2008). It does, however,
suggest that the attention that has been given to this, the
world’s fourth most important food crop, over the last half
century has not resulted in the huge changes in yield of the
sort that are implicit in statements such as “37 times higher
than corn and 140 times higher than soybeans” (above).
Mindful of the constraints imposed by the laws of physics,
it also suggests that the much-celebrated threefold increases
in the yields of rice (Bullard 2004), to what might be
regarded as the norm, are exceptional, that further doubling
is unlikely, and that there is little possibility of further
increases of one, let alone two, orders of magnitude.

Algae are no better than the next in this regard and, often
yield less, rather than more, than terrestrial crops. (Radmer and
Kok 1977) For example, in respect of conventional open-pond
cultivation of algae, Avigad Vonshak (personal communica-
tion 2008) states that “The highest numbers that I have seen
based on large scale long production periods for Spirulina are
in the range of 4 t per 1,000 m−2. This is an equivalent to a
daily productivity of 12–14 g m−2 d−1 and a total of about
300 days of operation. Most of the production facilities are
actually doing only 3 t” (see also Belay 1997). This is about
1% ‘efficiency’, (see “Photosynthetic efficiency” section
above) and possibly comparable to sugarcane.

It is frequently contended that much better yields can
be obtained by using closed ‘photobioreactors’. Howev-
er, these claims have still to be substantiated and
Benemann (2007) states that “Over the past few years,
several companies have issued press releases about
technologies they have developed to produce biofuels
from algae. The claims in these stories are that algae
yield ‘enormous’ amounts of biomass that can be turned
into liquid fuels at low cost. Most of the projects involve
the use of closed photobioreactors, in which the micro-
organisms are grown in a controlled manner by feeding
them CO2 and nutrients. Sadly, after decades of devel-
opment, none of those projects have ever demonstrated
the technology on a large scale, let alone over long
periods of time”.

Benemann (2008) adds that photobioreactors are worse
(than open-ponds) “in almost all respects. Good enough (in
an economic sense) to produce an inoculum (seed, starter
culture), in small amounts (or at most ~1% of production)”
(see also Benemann 2008, 2009)

Feeding motor vehicles or people

The concept of using ‘bioethanol’ to fuel road transport has
been around as long as there have been motor vehicles to
use it. Nikolaus Otto, the German inventor of the
combustion engine, conceived his invention to run on
ethanol. The Ford Model T, produced between 1903 and
1926 used ethanol. Even before World War II, Germany
sold a blend of gasoline with alcohol from potatoes called
Reichskraftsprit. This latter blend is particularly apt in the
present context because it permits a ready comparison
between the competing demands on biomass as food or
fuel. Because algae are not directly used as food by all but a
small minority of the world’s population, they could be
excluded from this competition if it were not for the fact
that, like all green crops, they require both water and space
in which to grow. It has been reported, for example Hodge
(2008) reports, that “enough algae can be grown to replace
all transportation fuels in the U.S. on only 15,000 miles2, or
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4.5 million acres of land”. Similarly Briggs (2004) writing
about the same 15,000 miles2, now grown to 9.5 million
acres, for producing enough biodiesel to meet the same
national requirement”, adds that “even if we are only able
to sustain an average yield of 5,000 gal/acre year in algae
systems spread across the US, the amount of land required
would still only be 28.5 million acres”. No doubt both
Hodge and Briggs have written in good faith and are
quoting potential rather than actual yields. Moreover, the
arithmetic, involving such imponderables as hectares, acres,
long tons, short tons, metric tons, US gallons, and Imperial
gallons is both tiresome and tedious. Nevertheless, having
attempted much of the same, I can say with confidence that
these and similar, much reproduced figures (see, e.g.,
Gressel, 2008), frequently exaggerate the actual yields (cf.
Johnston et al. 2009), often by an order of magnitude. For
example Avigad Vonshak’s figure (above) of about 14 g
m−2 day−1=about 4 t 1,000 m−2 is equivalent to=about 40 t
ha−1=16.2 tons acre−1. Assuming a carbohydrate content of
21%=this is about 3.4 tons carbohydrate/acre in 300 days.
“Factoring in maximum obtainable yield and realistic
plant operations, the expected actual recovery would be
about 141 US gal (ethanol) per ton” (Salassi 2007) and
(141×3.4)/1.2=400 U.K gal/acre/300 days=400×2/3=
267 gal petrol equivalent/acre

Comparing the yield of one plant crop (or biofuel) to
another becomes increasingly complex. For example, oil
palms (Wikipedia 2008) are perennial crops with a growing
season of 7 months, and an annual biomass of about 10 t
ha−1 yielding about 4.2 t of palm oil (US Department of
Agriculture 2005). One tonne of palm oil would be
expected to replace about 0.850 t of mineral diesel and, if
1 gal is taken to weigh 7.15 pounds, 4.2 t of palm oil would
be equivalent to 4.2×2,000/7.15=1,175 U.S. gal (4,465 L)
or 978 U.K gal/ha=978/ 2.47=396 U.K. gal/acre. Accord-
ingly, if we wish to lay to rest misleading statements such
as “Algae are the fastest-growing organisms on the planet,
and can produce 100 times more oil per acre than conven-
tional soil-tilled crops that are now being grown for biofuel
use” (Sears 2006), we should (in terms of biofuels) perhaps
compare the amount of bioethanol that algae currently yield
in 300 days (i.e., 400 U.K gal/acre) with what the oil palm
yields in a year (also about 400 U.K gal/acre).

It may be concluded that bioethanol figures are, in
general, about 400 U.K gal per acre (270 petrol/gasoline
equivalent) for algae, potatoes, and sugarcane and probably
for most major crops, which have benefited from man’s
attempts to maximize yields for many centuries. These
values (and see also Johnston et al. 2009) whose results
“show overestimates of biofuel yields by 100% or more for
many crops”) constitute about 1% theoretical light use
efficiency at best and the possibility of doubling them to
2% on a large-scale sustainable basis by better agronomy,

genetic intervention, or whatever, is perhaps as much as
could be reasonably aspired to in the foreseeable future.
This means that, in terms of land usage, one acre only
yields sufficient fuel (400 U.K gal) to propel one motor
vehicle about 8,000 miles, i.e., rather less than the U.K
average of 12 to 15,000 miles per annum (Walker 2008).
There is no doubt that aircraft can also fly on biofuels but,
however desirable this might become as fossil oil reserves
shrink, procuring sufficiently large quantities to meet this
need would involve a major diversion of land and water
resources (Squatriglia 2008) Thus, according to Boeing
(2009)), a “747-400 that flies 3,500 statute miles
(5,630 km) and carries 126,000 pounds (56,700 kg) of fuel
will consume an average of 5 gal (19 L) per mile”. If this
aircraft were fuelled by biofuel from palm oil and we accept
the generous (cf. Johnston et al. 2009) yields of 4.2 t of
palm oil/ha cited above, each flight would consume the
annual output of about 15 ha To put this in context, the
proposed expansion of London’s main airport “would put
an initial cap on additional flights from the new runway of
125,000 a year” (BBC News Channel 2009). The new third
runway alone would therefore gobble the output of about
1.875 million hectares (4.6 million acres) year−1, an area
large enough to meet the annual calorific food requirement
(Walker 1992a) of a population as large as that of the U.K.

The impact of biofuels on food supply

Pimentel and Pimentel (1990) have written that “to produce
food for each person in the United States, a total of 1.9 ha
[4.7 acres] of cropland and pasture land is used, whereas in
China only 0.4 ha/person is used”. This latter figure is near
enough one acre (i.e., one acre to produce food for one
person) and, while increasing population and diversion of
agricultural land to industry in China may well have
diminished this ratio over the last eighteen years, it
undoubtedly remains more representative of global require-
ments (than the corresponding figure for the United States).
For those who have no alternative but to survive on a
subsistence diet, one acre of land (0.404 ha) can easily
support 12 people (Walker 1992a). This of course was why
a million or more people died in Ireland when a switch
from traditional agricultural practices (to reliance on the
potato) was followed, in 1845, by the devastation wrought
by Phytopthora investans. “Turning to the unexceptional, it
was not unusual for an Irish farmer and his wife, to raise a
family of five and maintain several milking cows and a
couple of horses, on a thirty acre farm as recently as the
early 1960s” (Walker 1992a).

The present rapid increases in affluence in China and
India are making more demands on the N. American grain
crop. Hitherto, this has kept pace with or, arguably even
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made possible, much of the increases in world population
over the last 50 years but obviously it cannot continue
indefinitely. World food reserves are shrinking and there
can be little doubt that this decline is exacerbated by the
diversion of crops such as corn from food into biofuels
(Dyer 2006). Ostensibly, the use of algal biofuels should
not contribute to this decline although, even here, the use of
energy land and water for this purpose (Bullard 2004)
would not be without significance. As always, there are
dangers in generalization. For example there is much to be
said for algal treatment of sewage (Benemann 2008) as in
Israel where the byproducts are mostly put to better use
than fueling motor transport. In small, densely populated
countries, like the U.K., with 33 million registered motor
vehicles, even the proponents of biofuels (National Farmers
Union U.K. 2006) admit that it would take 20% of its
arable land (1.2 million hectares of 5.9 million hectares) to
meet the present European Community requirement to
derive 5% of its motor transport fuel from biomass.

Energy balance

Nothing so distinguishes those who advocate the use of
biofuels, from those who voice skepticism, than their
reactions to statements such as this: “At first sight they
(biofuels) “appear to be carbon-neutral (the carbon they
emit to the atmosphere when burned is offset by the carbon
that plants absorb from the atmosphere while growing”
(Roy Soc Policy 2008).

No one questions the fact that some energy must be
expended in the production of biofuels. It follows that, if an
appreciable amount of fossil fuel is used (Pimentel and
Patzek 2005), there will be no significant sparing of carbon
dioxide released to the atmosphere. In other words, if the
use of a biofuel is to be justified on the basis of diminished
carbon dioxide release it should exhibit more than a very
modest “net energy gain” (Wikipedia 2009).

What follows exemplifies the views of the skeptics and
the advocates of bioethanol from sugar cane (which
conserves at least as much light energy as biomass as any
other crop). Thus, Pimentel and Patzek (2007) are skeptical
and conclude that: “Based on all the fossil energy inputs in
U.S. sugarcane conversion process, a total of 1.12 kcal of
ethanol is produced per 1 kcal of fossil energy expended. In
Brazil a total of 1.38 kcal of ethanol is produced per 1 kcal
of fossil energy expended. Some pro-ethanol investigators
have overlooked various energy inputs in U.S. and Brazil-
ian sugarcane production, including farm labor, farm
machinery, processing machinery, and others. In other
studies, unrealistic low energy costs were attributed to such
energy inputs, as nitrogen fertilizer, insecticides, and
herbicides”.

Conversely, in a recent letter to the Guardian (a U.K,
national newspaper), Felipe Costa (of the Embassy of
Brazil) wrote “Sugarcane ethanol allows for a 90%
reduction in emissions, compared with petrol, and its
energy balance is 8.3 to one, i.e. for every unit of energy
used in production eight units of energy are created (sic)”.
To my mind, this from a country with a vested interest in
sugarcane ethanol, invites the time-honored response that
“he would (say that), wouldn’t he?” (Rice-Davies 1963).

Why do I number myself amongst the skeptics? In
‘Energy Plants and Man’ (Walker 1992a) I quoted Leach
(1975) who wrote that “The industrialized food systems of
the West have raised food yields and quality and cut labor
usage, but have done so by heavy consumption of—and
dependence on—fossil fuels. Most developed societies now
use 7 to 8 units of fossil fuel energy for each food energy
unit consumed, or an annual 0.8 tons of oil equivalent per
person.” In short, industrialized (‘Western’) agriculture,
which is unquestionably essential if most of us are not to
starve (Walker 1995) is nevertheless an in inefficient way of
“turning oil into potatoes” (Walker 1992a). It returns more
carbon dioxide to the atmosphere than it extracts This is not
to say that the energy balance is as unfavorable for biofuels
(as Leach considered it to be for food in 1975), or that all of
the inputs are necessarily the same, but the energy costs of
transporting relatively light biomass from field to process-
ing plant are similar and then there are the considerable
additional energy costs (distillation and such) of conversion
to usable motor transport fuel.

Accurate and meaningful determination of energy inputs
is difficult (Benemann and Oswald 1996) and deciding
what might, or might not, be put into the balance can be as
subjective as deciding what constitutes a work of art. It has
also been confounded by statements reminiscent of those
who wished to deny climate change (see, e.g., Dale 2007).
Even so, the work of independent and disinterested
scientists might be thought to carry more credence than
statements by some politicians, farmers or others with
vested interests. In the end, the total energy inputs depend
on where you stop counting. If, as I walk through nearby
forests, and pick up fallen branches (as do millions, the
world over, every day), I have in my hand a biofuel as
“carbon-neutral” as it is possible to imagine. It is said that
wood warms you five times; once when you fell it, once
when you saw it, once when you carry it home, once when
you chop it and once when you burn it. So, even in these
circumstances, there is a modest energy input. However, if I
wished to produce and sell wood chips to my neighbors, I
would need to surround land with a 2-m tall fence to keep
out the deer and shoot every gray squirrel that I could see. I
would perhaps plant fast-growing willows and do my best
to provide them with water and inorganic nutrients. After a
few years, I might borrow a large machine (which had
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taken an unthinkable number of calories to construct) and
use it to drag my trees from the ground Then I would need
a ‘shredder’, also fueled by diesel, to render them into small
pieces which could be dried, at the expense of some
significant part of my crop, so that they become ‘chips’
which could be transported by road to where they are
needed. Seemingly, Matthew Carse (2007) chief executive
of ‘Prenergy’, has said of these: “Using wood chip from
independently certified sustainable forestry, which ensures
harvested trees are replanted, means that generation is
carbon-neutral and sustainable”. Personally, I feel bound to
conclude that this is wishful thinking but please don’t
misunderstand me. I commend wood chips as a fuel just as
I commend potato chips (of the sort that the British
combined with fish as a staple diet during the last world
war) as an item of diet. If wood chips help to keep our
power stations running for an hour or two when imported
gas is shut off that is fine, But let’s not pretend that they, or
any other biofuel, will ever spare as much carbon dioxide
released to the atmosphere as a handful of low energy
electric lights or not be bettered by any other modest degree
of fuel economy.

Why grow biomass as a source of road transport fuels?

It is suggested that because biofuels recycle newly fixed
CO2 they do not add to existing concentrations of
atmospheric CO2 (cf. Felipe Costa above). If, as Pimentel
and Patzek claim, the energy ratio is 1 to 1.38 at best and,
for many terrestrial crops there would be no net gain at all,
it seems that any overall sparing of emissions would be
negligible. A general lowering of legal speed limits by
5 mph might well have a much larger effect as would any
number of alternative energy conservation measures
(Walker 1992a).

Reducing dependence on imported oil (Sheehan et al.
1998) would no doubt be very welcome (not only to the
United States) but a large reduction is scarcely feasible on
the basis of proven yields. Large scale switching of N.
American grain from food to biofuels has already caused,
or added to, world food shortages. There are yet no
authenticated figures for microalgae grown for prolonged
periods in large-scale ‘photobioreactors’ (Benemann and
Oswald 1996; Weissman et al. 1988) and, although these
would not affect conventional food supplies directly, they
would compete for fossil-based fertilizers, land, and water
(Bullard 2004; Walker 2008). In view of the findings of
Pimentel and Patzek, it can be reasonably concluded that
the best that can be expected from industrial production of
biofuels in general is energy neutrality, i.e., near equality of
energy inputs (mostly from fossil fuels, etc.) and outputs
(energy content of the biofuels produced). It is difficult to

imagine therefore that the degree of industrialization
implicit in the use of ‘photobioreactors’ could be achieved
with a positive energy balance.

Summary and Conclusions

Re-examination of the relevant literature confirms that there
is general agreement that maximal, theoretical light utiliza-
tion by C3 plants and algae is about 4.5%. An increase in
actual light utilization by crops, from present values (of
about 1%) to as much as 3%, remains a goal to be aspired
to rather than one which is likely to be achieved in the
foreseeable future. There is no credible evidence that
cultivated algae are currently able to accumulate substan-
tially more biomass, during a period of sustained growth,
than other green organisms. When comparisons of crop
yields are based on their normal period of growth, the
yields of biomass are relatively similar, regardless of
species or locality. Intensive agricultural practice of any
sort rarely uses less fossil fuel energy than the light energy
that it conserves as biomass. Biofuels do not, at present,
lead to any appreciable sparing of carbon dioxide emissions
that could not be better accomplished by the most modest
means of energy conservation. Moreover, diversion of
crops from food to biofuels makes a significant contribution
to increasing food shortages and rising prices. This is not to
say that biofuels in general, or algal biofuels in particular,
have no place in substituting for fossil oil where there is, as
yet, no practical alternative. Western agriculture is, after all,
an inefficient but inescapable means of converting fossil
fuels into food (Walker 1992a). ‘Retro-agriculture’ (the use
of biomass for transport fuels) may, despite its intrinsic
drawbacks of low density and distillation or other process-
ing costs, may still be judged to have a role in energy
security and conservation. As such, its purpose will not,
however, be best served by exaggeration of the yields that
might be achieved per unit area, unrealistic estimates of the
energy that it is necessarily expended in its utilization of
failure to recognize the constraints imposed by the laws of
physics.
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