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Abstract  

 

It has been always assumed, and frequently reported, that host plants, as biologically 

active substrates, should have a direct influence on associated epiphyton. However, some 

studies favoured the neutral substrate hypothesis. Thus the relationship between host plant and 

epiphytic community remained unresolved. This Master´s thesis focused on the basal question 

that numerous previous studies overlooked. Is there any significant influence of host plant on 

freshwater algal epiphyton in comparison to the influence of other factors, e.g. site and 

environmental conditions? In addition, substrate specificity of individual algal taxa was 

investigated. The research concerned several types of natural plant substrates at several water 

bodies in the Czech Republic, which provided a more accurate and general insight in the 

ecology of microphytobenthos.  

The results have demonstrated that site was the main factor affecting epiphytic 

community structure, followed by mild, but still noticeable, effect of environmental 

conditions (pH and conductivity). In contrary, host plant had almost no influence and very 

few algal species were found to be host specific. Therefore, the neutral substrate hypothesis is 

considerably supported, suggesting that epiphyton can be used in biomonitoring regardless of 

substrate type. Moreover, the research concerned diatoms (Bacillariophyceae) and desmids 

(Desmidiales), two groups of microscopic algae that are monophyletic, unrelated and 

ecologically very important. All analyses were done in parallel for both algal groups, and 

finally, the direct comparison of community structures of both algal groups was performed. 

Apparently, the group strategies were mostly identical, and therefore they could be 

generalized for the entire microphytobentic community. 
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Abstrakt  

 

Vždy se předpokládalo a často bylo pozorováno, že hostitelská rostlina, jakožto 

biologicky aktivní typ substrátu, má přímý vliv na epifyton žijící na jejím povrchu. Avšak 

některé studie spíše upřednostňují hypotézu neutrality substrátu, tudíž vztah mezi hostitelskou 

rostlinou a epifytonem je stále diskutabilní. Tato diplomová práce se zaměřila na základní 

otázku, kterou mnoho předchozích prací opomnělo. Má hostitelská rostlina signifikantní vliv 

na sladkovodní epifytické společenstvo řas v porovnání s dalšími faktory, např. lokalitou a 

podmínkami prostředí? Navíc byla zkoumána i substrátová specificita jednotlivých taxonů 

řas. Práce se zabývala epifytonem na několika typech přirozených rostlinných substrátů, 

odebíraných v několika vodních plochách v České republice. Poskytuje tak přesnější a 

obecnější pohled na ekologii mikrofytobentosu. 

V rámci této práce se ukázalo, že lokalita byla hlavním faktorem ovlivňující epifytické 

společenstvo, následována slabším, ale stále zaznamenatelným, vlivem podmínek prostředí 

(pH a konduktivitou). Naproti tomu hostitelská rostlina nehrála skoro žádnou roli a jen pár 

druhů řas vykazovalo substrátovou specificitu. Tyto výsledky tak významně podpořily 

hypotézu neutrality substrátu, což vedlo k závěru, že epiphyton může být využit 

v biomonitoringu nezávisle na typu substrátu. Práce navíc zkoumala dvě skupiny řas zároveň 

- rozsivky (Bacillariophyceae) a krásivky (Desmidiales). Obě skupiny řas jsou monofyletické, 

nepříbuzné a ekologicky klíčové. Všechny analýzy byly provedeny paralelně pro obě skupiny 

řas a v poslední fázi byla jejich společenstva porovnána analýzami přímo. Je zřejmé, že 

skupinové strategie byly stejné, a tak mohou být výsledky této studie zobecněny pro celý 

mikrofytobentos. 
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1. Introduction 

1.1 Epiphyton and factors influencing its community 

Epiphytic community
1
 of microscopic algae and cyanobacteria is an important 

component of aquatic ecosystems. Epiphytic community is one of the basic parts of food webs 

in ecosystems (Kitting et al., 1984; James et al., 2000; Hart & Lovvorn, 2003) and the 

productivity of epiphytic algae may equalize or even exceed the productivity of their host 

plants and phytoplankton (Brock, 1970; Allen, 1971; Cattaneo & Kalff, 1980; Wetzel, 1993). 

Moreover, the complex interactions between phytoplankton, benthic microalgae (particularly 

epiphyton) and macrophytes determine the whole ecosystem character and the ecosystem 

responses to changing environmental conditions (Sand-Jensen & Borum, 1991; Havens et al., 

2001; Liboriussen & Jeppesen, 2003). 

Freshwater epiphyton, as well as other benthic communities, are influenced by many 

different factors. The environmental conditions seem to belong to the main ones and they are 

easy to study, so there are many studies published on this topic. They concentrate mainly on 

the effects of pH, conductivity, nutrients (e.g. Coesel, 1982; Poulíčková et al., 2004; Soininen 

et al., 2004; Charles et al., 2006; Fránková et al., 2009; Machová-Černá & Neustupa, 2009; 

Neustupa et al., 2013), and light conditions (e.g. (Gons, 1982; Müller, 1999; Albay & 

Akcaalan, 2003; Asaeda et al., 2004; Hillebrand, 2005). Further, factors such as space and, to 

a much lesser extent, time can play an important role in determining the community structure 

of benthic microalgae (Messyasz & Kuczyńska-Kippen, 2006; Machová-Černá & Neustupa, 

2009; Krivograd Klemenčič et al., 2010; Neustupa et al., 2012; Svoboda et al., 2014). 

Epiphytic organisms can also be influenced by biotic interactions, including intraspecific 

competition (Jones et al., 2000) and predation (Cattaneo, 1983; Dudley, 1992; Jones et al., 

2000; Hillebrand, 2005; Kuczyńska-Kippen et al., 2005). Predation can greatly reduce the 

abundance of epiphytic organisms and even change the whole character of epiphyton, for 

example predation pressure may lead to the reduction of filamentous or loosely attached 

epiphytic algae. It is also noteworthy that cyanobacteria and algae, especially diatoms and 

desmids, represent part of microbial biofilms (Ács et al., 2003; Domozych & Domozych, 

2008). Thus, algal epiphyton may be influenced by interactions between microorganisms 

                                                           
1
 Epiphytic community, or alternatively epiphyton, is a type of benthic community that includes organisms living 

on the surface of macrophytes. The summary of all types of benthic communities was published in Poulíčková et 

al. (2008). The term macrophytes usually represents the group of larger aquatic photosynthetic organisms, from 

larger algae to vascular plants. For more details about aquatic macrophytes see e.g. Chambers et al. (2008).  
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within these biofilms and by biofilm chemical composition and succession (Sekar et al., 2002; 

Barranguet et al., 2004). It was far beyond the reach of this thesis to cover this aspect though.  

The question whether epiphytic community is influenced by substrate, i.e. host plant, 

appeared a long time ago. For instance, Prowse (1959) belongs to the first ones that reported 

the existence of specific macrophyte-epiphyton associations. To the best of my knowledge, 

the influence of the host plant still remains very debatable because of methodological 

discrepancies and the existence of just a few studies that proposed good comparison of the 

influence of substrate and other factors, e.g. environmental conditions and space (more in 

Chapter 1.5). Despite the difficulties associated with this question, there are more studies that 

assumed right from the right beginning that host plants, as biologically active substrates, 

affected associated epiphyton and subsequently the researchers wanted to explain how. The 

possible effects of host plant on associated epiphytic community, i.e. positive, negative or 

neutral, are summarized in the following three chapters. At this point, it is important to note 

that this thesis only focuses on freshwater epiphyton, excluding the tropics. 

 

1.2 Positive effect of host plant on associated epiphyton 

The first hypothesis is that host plant positively affects associated epiphyton. It has 

been already known that some higher plants can release the part of inorganic nutrients through 

their surface (Riber et al., 1983). The released nutrients become available for epiphytic 

organisms and may enhance epiphytic growth, mainly in oligotrophic waters (Eminson & 

Moss, 1980; Burkholder et al., 1990). This could be especially important for adnate algae 

forming a firm biofilm that are relatively isolated from nutrient supplies in overlying water 

(Burkholder et al., 1990). However, a study by Kahlert & Pettersson (2002) emphasized the 

importance of substrate as a source of nutrients even in the lakes with increased trophy. Such 

a direct nutrient input may also support the early stages of epiphyton development (Albay & 

Akcaalan, 2003).  

Nutrients released through the surface of macrophytes may even lead to mutualism 

between macrophytes and epiphytic algae. For instance, host plants might well be in turn 

supplied by carbon dioxide and some organic micronutrients (Allen, 1971). Host plants can 

also be protected from predation by the layer of epiphyton, simply because grazers would 

prefer to feed on microscopic epiphytic organisms over plant tissues (Hutchinson, 1975; 

Thomas et al., 1985; Hart & Lovvorn, 2003). A very illustrative example of mutualism is the 
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model of positive feedback that may appear in oligotrophic waters between the genus of 

carnivorous plants Utricularia and its epiphytic community (Ulanowicz, 1995). Utricularia 

provides nutrients for the epiphytic community, and thus enhances the growth of epiphyton 

and indirectly increases the attraction of zooplankton predators. As soon as zooplankton 

predator approaches the higher plant, it is caught in Utricularia´s trap and then digested. 

Finally, nutrients are returned to the macrophyte. Nevertheless, Utricularia cannot catch all 

zooplankton, otherwise it would be overgrown by epiphyton, which would not be limited by 

the predation pressure.  

Nutrient exchange through the macrophyte surface is just one way of positive 

influence on associated epiphyton. Furthermore, some macrophytes have the ability to alter 

the surrounding physicochemical environment (Morin & Kimb, 1983; Wilcock et al., 1999; 

Joniak et al., 2007; Soudzilovskaia et al., 2010). The genus Sphagmun is a well-known 

example of this because it can acidify its surroundings through cation exchange
2
 (Clymo, 

1964; reviewed in Andrus, 1986). As a result, a higher occurrence and abundance of 

acidophilic algae can be expected in the immediate vicinity of Sphagnum and plants with 

similar ability. 

 

1.3 Negative effect of host plant on associated epiphyton 

In contrast, host plant may negatively affect the associated epiphytic community. It is 

probable that macrophyte and epiphytic organisms compete for nutrients or light (Fitzgerald, 

1969; Phillips et al., 1978; Sand-Jensen, 1990; Roberts et al., 2003; Köhler et al., 2010). The 

shading effect of the epiphytic layer may even cause damage to leaf structures and 

chloroplasts (Asaeda et al., 2004), as well as some morphological changes of host plants, 

specifically the allocation of greater biomass to roots rather than stems and leaves (Sultana et 

al., 2010). Therefore in these cases, the reduction or total removal of epiphytes might be 

favorable. 

The first way for a host plant to inhibit the growth of an undesirable epiphytic 

community is to produce allelopathic substances. It is important to note that Molisch (1937, 

referred after van Donk & van de Bund, 2002) classically defined allelopathy as any 

biochemical interaction, including both stimulation and inhibition, among higher plants and 

                                                           
2
 Sphagmun is able to release carbon cations from its cells in exchange for e.g. calcic, magnesium or potassium 

cations from the surroundings (Clymo, 1964; reviewed in Andrus, 1986). 
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between higher plants and microorganisms. Presently, allelopathy is usually mentioned in the 

negative context. There are many studies on the subject of allelopathy (reviewed in van Donk 

& van de Bund, 2002; Gross, 2003; and Hilt, 2006). However, they typically focus on a 

particular plant taxon (e.g. genus Chara, Myriophyllum, Ceratophyllum, Elodea) and how it 

influences the growth of particular taxon of epiphytic or planktonic organism. Interestingly, 

Hilt (2006) suggested that allelopathic substances cause rather the inhibition of planktonic 

organisms, because the epiphytic community lives in the immediate vicinity of host plant and 

is therefore better adapted to any excreted allelopathic substances. In other words, co-

evolution between host plants and epiphytes is facilitated by tolerance of the epiphytic 

community to allelopathic substances produced by host plants. 

 Another way how host plants can negatively affect epiphytic growth is by attracting 

of predators that selectively remove epiphytes. Brönmark (1985) claimed that host plant 

excreted dissolved organic matter to attract predators directly, meaning that it did not 

contribute to epiphytic growth at all. Furthermore, indirect predator attraction can also reduce 

the growth of epiphyton, like in the already mentioned model of macrophyte-epiphyton-

zooplankton interaction (Ulanowicz, 1995) or in the similar model of macrophyte-epiphyton-

snails interaction (Thomas et al., 1985). In these cases of indirect attraction, the host plant 

would improve the nutritional value of epiphyton, increasing predator attraction. In turn, the 

predators reduces epiphytic biomass. However, the results of Jones et al. (2000) and Mormul 

et al.  (2010) showed that even though predators grazed on the layer of epiphyton, host plant 

did not probably contribute to their attraction.  

 

1.4 Host plant as a neutral substrate  

The neutral substrate hypothesis (Shelford, 1918; referred after Cattaneo & Kalff, 

1979) offers a totally different view on the relationship between host plant and associated 

epiphytic organisms. This is often tested by the comparison of epiphytes on natural and 

artificial substrates
3
 that are the same size and shape. If there are no differences between the 

epiphyton on both types of substrates within a single water body, the host plant is regarded as 

neutral, meaning that host plant does not interact biologically nor chemically with epiphyton. 

                                                           
3
 Some may argue that using of artificial substrates provides misleading results. Therefore they must be used 

with more caution, but natural diatom community, that often represents the epiphytic dominant, seems to be well 

simulated on artificial substrate (Cattaneo & Amireault, 1992). 
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The only possible influence is indirect (Cattaneo & Kalff, 1979, 1980; Cattaneo et al., 1998; 

Kuczyńska-Kippen et al., 2005; Laugaste & Reunanen, 2005; Messyasz & Kuczyńska-

Kippen, 2006). The neutral substrate hypothesis was also supported by Siver (1977) and 

Cejudo-Figueiras et al. (2010), who concluded that in this case epiphyton can be used for 

biomonitoring regardless of substrate type. Based on these studies, one of the relevant indirect 

effects is plant morphology (in other words plant architecture or substrate complexity; Fig. 1), 

as it is known that diversity and abundance of microorganisms increases with habitat 

complexity at smaller scales (Taniguchi & Tokeshi, 2004). Further, host plant can indirectly 

affect epiphyton for example through density of vegetation and position in the water column 

(light and shading effect), or movement in the water (income of new nutrients). 

 

 

Fig. 1 Illustration of host plants with different architecture: (A) Elodea canadensis, (B) Myriophyllum spicatum, 

(C) Potamogeton amplifolius, (D) Potamogeton robbinsii, (E) Vallisneria americana, (F) Potamogeton sp., (G) 

Potamogeton richardsonii. The figure is from Lalonde & Downing (1991).  

 

There are several opponents of the neutral substrate hypothesis, like the already 

mentioned studies on positive and negative substrate interactions in Chapter 1.2 and Chapter 

1.3. Then, commentary by Gough & Gough (1981) can also be taken into account. The 

authors objected to the results in Cattaneo & Kalff (1979) that showed species composition, 

biomass and production of epiphyton did not differ on Potamogeton and its plastic model. 

According to Gough & Gough (1981), the results of Cattaneo & Kalff (1979) were based on 

the comparison of just a few macrophytes and subsequently too generalized. This 

disagreement was also supported by other studies (Gough & Woelkerling, 1976; Blindow, 

1987), which reported significant differences in algal epiphyton on different natural plant 

substrates with similar morphology, even within one site. Therefore, it seemed likely that 

some macrophytes were a neutral substrate for epiphytic microorganisms, while others 

actively influenced associated epiphytic community.  
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1.5 Comparative effects of host plant and other factors on epiphyton  

There has always been a question which factor has the greatest influence on freshwater 

algal epiphyton. Does substrate even matter in comparison to other environmental and spatial 

factors? This basic question is highly underestimated regarding to the high number of studies 

that concerns only the influence of host plant. The publications that provided more accurate 

insight into ecology of epiphyton, by investigating the effects of several factors on epiphyton 

at once, are relatively uncommon.  

Eminson & Moss (1980) studied the communities of epiphytic algae at two sites. The 

results of this study showed that macrophytes had a greater influence on associated epiphyton 

in oligotrophic waters, in other words that environmental conditions had a greater impact on 

epiphyton. Lalonde & Downing (1991) showed that epiphytic biomass was dependent on lake 

trophic status, depth, and to a lesser extent on plant architecture. However, the influence of 

environmental variables, differing between lakes, was greater than the influence of host plant. 

Cejudo-Figueiras et al. (2010) found significant differences in diatom communities again 

between sites with different trophy, but not between host plants. Additionally, Pals et al. 

(2006) observed some significant differences in epiphytic communities of desmids between 

several types of substrates within oligotrophic and mesotrophic lakes. The authors could not 

explain these dissimilarities with plant morphology, nor with the chemical influence of host 

plant on the immediate vicinity. They concluded that the differences were determined by local 

environmental factors, which were possibly closely associated with the substrate. 

Nevertheless, they always found much greater differences between epiphyton from different 

sites (Pals et al., 2006). A similar conclusion was provided in Millie & Lowe (1983), which 

emphasized that variation of diatom communities within replicate samples from a particular 

macrophyte was as great as, or even greater than, variation between macrophytes. Gough & 

Woelkerling (1976) and Woelkerling (1976) also reported that there were significant 

differences between algal epiphyton on various macrophytes both within and among several 

water bodies. However, the differences of epiphyton between sites could not be explained by 

environmental factors. The differences of epiphyton within sites led to the conclusion that the 

substrate itself was able to affect associated epiphytic communities, in contrast to the 

explanation in Pals et al. (2006).  

To summarize these papers, space and environmental variables are likely more 

important for epiphytic algae than the substrate itself, which favors the neutral substrate 

hypothesis once again. 
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1.6 Aims of this Master´s thesis 

The aim of this Master´s thesis was to study which factors have the greatest influence 

freshwater algal epiphyton, thus to provide more general and accurate insight into ecology of 

freshwater microphytobenthos. Diatoms (Bacillariophyceae, Stramenopila, SAR) and desmids 

(Desmidiales, Viridiplantae, Archaeplastida) were chosen as the model algal groups for this 

research, because both diatoms and desmids are monophyletic and unrelated (see the 

supergroups according to Adl et al. (2012) in Fig. 2). Moreover, both selected algal groups are 

very important ecologically as they often dominant in given microhabitats and ecosystems 

(particularly for freshwater epiphyton see e.g. Lazarek, 1982; Kuczyńska-Kippen et al., 2005; 

Domozych & Domozych, 2008; Krivograd Klemenčič et al., 2010), and they are frequently 

used as model organisms for biomonitoring (Dixit et al., 1992; Coesel, 2001, 2003; Charles et 

al., 2006; Blanco et al., 2014).  

 

 

Fig. 2 Tree of Eukaryotes (Adl et al., 2012). The positions of diatoms and desmids are marked by black stars. 
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The central questions of the Master´s thesis were: (1) Is there a significant influence of 

host plant on associated algal epiphyton? (2) Do particular algal taxa show substrate 

specificity? (3) Are the strategies of diatoms and desmids parallel or contrast? To what extent 

can discovered trends be generalized for the entire microphytobentic community?  

I suggested that the effects of different factors (i.e. host plant, site and environmental 

variables) on the community structure of epiphytic algae should have been investigated 

simultaneously. Such an approach would show the relative influence of host plant on 

associated epiphyton and if that influence was significant or negligible. Furthermore, I would 

conclude that if both algal groups, diatoms and desmids, showed similar strategies, then these 

patterns could be generalized for the entire microphytobentic community. 
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2. Materials and methods  

2.1 Study sites and sampling 

 This thesis focused on a comparison of the algal epiphytic communities associated 

with different types of natural plant substrates. To achieve this, sampling of epiphyton was 

done at 15 isolated water bodies (further the term site is used), but strictly in stagnant waters. 

The sites were selected within eight areas in the Czech Republic (Fig.3): PR Rybníčky u 

Podbořánek, Horní Kracle, PP Rybníček u Studeného, PP Ďáblík, NPP Swamp and adjacent 

peatlands (including the site called tůň u Klůčku), Borkovická blata, PR Kozohlůdky and 

pískovny Cep
4
. All 15 sites were characterized as oligothophic or mesotrophic. For the list of 

the sites see Table 2 and for the complete overview of the sites with additional information 

see Appendix 1. The eutrophic sites were excluded right from the beginning of the study, 

because of the possible discrepancy between the epiphyte-response pattern in oligotrophic and 

eutrophic waters, suggested by Eminson & Moss (1980). The eutrophic sites represent 

ecosystems where multiple different factors may play an important role in the determining the 

community structure. For example, increased nutrient loading and dominance of plankton 

make benthic communities heavily influenced by turbidity and consequential shade, leading  

 

Fig. 3 Map of the Czech Republic with marked study areas. 

                                                           
4
 I decided to maintain all names of areas and study sites in Czech to make it easier to find those sites afterwards, 

if interested.  
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to an overall reduction of benthic production (Sand-Jensen & Borum, 1991; Havens et al., 

2001; Liboriussen & Jeppesen, 2003). Besides, the criterion of low trophy allowed finding the 

host plants that were chosen for the study. 

There were eight types (genera) of host plants (macrophytes) sampled: Sphagnum 

spp., Utricularia spp., Nymphaea spp., Potamogeton natans, Calla palustris, Chara spp., 

Typha spp. and Equisetum fluviatile (Table 1). They were chosen with regard to their common 

occurrence and required overlap between selected sites. In most cases, these host plants and 

the associated epiphyton have already been studied and there are published data concerning 

their possible interactions. The host plants could be divided into three groups, according to the 

plant architecture (i.e. substrate complexity), which might also affect the associated epiphyton 

community structure. These groups were the following: (1) complex plant architecture 

characterized by a dense branching and numerous smaller leaves, (2) simple plant architecture 

characterized by a smooth, relatively unbranched stem, and (3) simple plant architecture with 

smooth stem and floating leaves. 

At least three host genera and three replicates (i.e. the samples from the same type of 

substrate, the distance between the replicated samples was at least 5 m) were collected at each 

site, if possible. A similar sampling approach was used e.g. in Millie & Lowe (1983) and 

Townsend & Gell (2005). Sometimes, however, there were only two host types present, or 

fewer than three replicates were taken. These data were included in the analyses anyway.  

To sum this methodological part up, firstly, the epiphyton variation among the sites 

within one substrate type could be investigated, thanks to the overlap of host plant types 

between individual sites. Secondly, the epiphyton variation within the sites, both within and 

among substrate types, could be also examined thanks to the sampling of several substrate 

types and collected replications. The complete lists of study sites and macrophytes, as well as 

used abbreviations, are included in Table 1 and Table 2. 

The sampling was held in 2011 (as a pre-study, 7 sites, 39 samples) and in 2012 (14 

sites, 132 samples). In total, 171 samples were collected (see Appendix 2). Although it was 

done so, it was not the main aim of this research to reveal the inter-annual variation in 

epiphytic community, as reported in e.g. Laugaste & Reunanen (2005) and dos Santos et al. 

(2013). The datasets from 2011 and 2012 are unequal concerning the number of samples, but 

most of the samples from 2011 were collected again in 2012. However, the sampling in 2012 

was far more complex, and thus provided much better data.  
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Table 1 Overview of selected host plants, regardless of sampling year. In total, 171 samples were collected from 

15 sites and 8 types (genera) of host plants. More details are included in the appendix. 

 

  host plant abbr. plant architecture no. of sites no. of samples 

  Sphagnum spp. SP complex 9 39 

  Utricularia spp. UT complex 11 42 

  Nymphaea spp. NY simple, floating leaves 6 20 

  Potamogeton natans PO simple, floating leaves 7 21 

  Calla palustris CA simple 4 18 

  Chara spp. CH simple 4 10 

  Equisetum fluviatile EQ simple 2 9 

  Typha spp. TY simple 5 12 

 

 

Table 2 Overview of the sites and sampled host plants (the grey fields), regardless of sampling year. More 

details are included in the appendix. (x) The samples that were included in the reduced datasets which were used 

in majority of analyses. (ᵃ) The sites that were not included to the analysis of desmid communities due to low 

abundances in the samples. (ᵇ) The site sampled just in 2011.  

  site abbr. no. of samples SP UT NY PO CA CH EQ TY 

  Swamp 1 S1 12                 

  Swamp 2 S2 6                 

  Swamp 3 S3 12 x x x           

  tůň u Klůčku TK 15 x x x x         

  Kozohlůdky KO 15                 

  Borkovická blata BB 6                 

  pískovny Cep 1 C1 9                 

  pískovny Cep 2 C2 5                 

  pískovny Cep 3 C3 9 x   x x         

  Rybníčky u Podbořánek 1 P1 30 x x x x         

  Rybníčky u Podbořánek 2 P2 12                 

  Horní Kracle HK 9                 

  Ďáblík 1 D1 18 x x   x         

  Ďáblík 2 ᵃ D2 7                 

  Rybníček u Studeného ᵃᵇ RS 6                 

 

 

All the samples were collected in late summer and autumn. In general, host plants may 

have different growth rates which is supposed to affect the epiphytic colonisation rates (Millie 

& Lowe, 1983). As the shoots of some macrophyte genera, e.g. Utricularia and Nymphaea, 

have to grow up every vegetative season, the late summer and autumn was possibly the best 

time for sampling, as the macrophytes have already grown up and been covered by relatively 
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well developed epiphyton. Also, there were no disturbances related to winter temperature 

decrease, freezing and significant light limitation that may affect epiphyton (Machová-Černá 

& Neustupa, 2009; Neustupa et al., 2012). Thus, the pre-study sampling in 2011 was done 

within few weeks from the end of September to mid October. Afterwards for the main 

sampling in 2012, it was decided to done it one month earlier, from the end of August to mid 

September. The reason was that even though the algal epiphytic communities were well 

developed in autumn, it was too late to find some host plants at the sites. For the sampling 

dates see Appendix 1. The pre-study also ensured that all chosen genera of macrophytes were 

suitable for the epiphyton sampling as most samples contained enough cells to be included in 

the statistical analysis.  

The samples of epiphyton were obtained by plant squeezing or careful brushing of 

plant surface. Both these techniques are commonly used and highly efficient ways to sample 

attached epiphytic communities of microorganisms (e.g. Asaeda et al., 2004; Pals et al., 2006; 

Neustupa et al., 2011). Only the top submerged part of the host plant (max. down to 10 cm in 

depth) were sampled to avoid any variability caused by different positions of macrophytes in 

the water column (Morin & Kimb, 1983) and by often reported vertical zonation of epiphytic 

community (Gons, 1982; Lalonde & Downing, 1991; Müller, 1995, 1999). Further, Lugol´s 

solution was used to fix the samples right in the field. Therefore, any changes in the species 

ratios in the epiphytic communities, which might have been caused by a sudden change of 

ambient conditions, were prevented. However, Lugol´s solution may eventually break down, 

so more drops of the solution were subsequently added into the samples, whenever it was 

necessary. 

The actual environmental variables (pH and conductivity; Appendix 2) were measured 

immediately in the field, using a combined pH/conductivity meter WTW 340i (WTW GmbH, 

Weilheim, Germany). These environmental variables were chosen because they have been 

shown to explain significant part of variation in the benthic microalgal communities (e.g. 

Fránková et al., 2009; Neustupa et al., 2013).  

 

2.2 Sample processing 

The current investigation is based on community structure data. Epiphytic diatoms 

(Bacillariophyceae) and desmids (Desmidiales) were chosen as the model groups (Chapter 

1.6). In the laboratory, relative abundances of algal species in their community were counted 
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directly in the light microscope Olympus CX 31. From every sample, precisely 200 randomly 

encountered diatom cells and 200 randomly encountered desmid cells were identified to the 

species level. The colonies were counted up to 10 cells. Determination of 200 desmids per 

sample has widely been used in other studies (e.g. Pals et al., 2006; Neustupa et al., 2012; 

Svoboda et al., 2014). It was decided to do the same for diatoms (as in Neustupa et al., 2013), 

although it is more common to count 300 or even more diatom cells, or alternatively valves
5
, 

per sample (Eminson & Moss, 1980; Millie & Lowe, 1983; Gaiser & Johansen, 2000; 

Poulíčková et al., 2004; Charles et al., 2006; Fránková et al., 2009). The purpose of the 

unification of the cell counts was to obtain comparable datasets.  

In order to check whether or not the number of determined cells significantly affects 

the recorded community structure, a simple investigation was performed. There were two 

samples chosen, the first one (2-S1-UT1) as the representative of peatlands and the other one 

(2-P1-UT1) as the representative of mesotrophic ponds. Cumulatively from every sample, 200 

cells, 400 cells and 1000 cells of diatoms were identified to the species level. To examine if 

the datasets differ, the Kolmogorov-Smirnov test was done in the software PAST, ver. 2.17c 

(Hammer et al., 2001). The Kolmogorov-Smirnov test is a nonparametric test which 

determines whether two datasets come from the same, respectively identical distributions 

(Young, 1977; Legendre & Legendre, 1998). Thus, three pairwise tests were run separately 

for each of the chosen samples. The first analysis compared the datasets of 200 cells and 400 

cells, the second one compared the datasets of 200 cells and 1000 cells, and the third one 

compared the datasets of 400 cells and 1000 cells. The same tests were performed for the 

desmid community. The Kolmogorov-Smirnov tests were non-significant in all cases (P 

values not shown), indicating that the distributions within the sample did not differ, regardless 

of number of counted cells. Therefore, counting of 200 cells of particular algal group per 

sample should be sufficient to give the relevant community structure. 

For the illustration of similar distributions within the sample, histograms are shown in 

Fig. 4. The graphs also reveal that there were always just few species that dominated the 

community. As it could be noted from species lists (not included in the thesis), these dominant 

species remained the same within all numbers of counted cells. Secondly, lots of rare species 

were present in the samples. This is considered to be true in general and detected cumulative  

                                                           
5
 The diatom frustule (i.e. silicate cell wall) consists of two separate valves. Therefore, if for example Millie & 

Lowe (1983) or Gaiser & Johansen (2000) identified 500 diatom valves, theoretically, they might have recorded 

250 complete diatom cells. The advantage of this technique is that it takes into account the presence of dead cells 

that already fell apart, and the cells that were crushed during a slide preparation. Nevertheless, the majority of 

published studies uses the cell as the count unit. The same was done within this thesis. 
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increase in species richness with higher number of counted cells is not surprising at all (see 

e.g. Finlay & Clarke, 1999; Fontaneto et al., 2006). The other scarce changes in the species 

distribution might have been just stochastic, for instance connected to the underestimation of 

bigger species as reported in Snoeijs et al. (2002). In conclusion, since the rare species may 

not be so crucial for revealing ecological patterns (Heino & Soininen, 2010), there was no 

point of counting more cells than 200 per sample for each algal group. It would be very time 

consuming due to a high number of samples (171 in total), and the most abundant species 

would be recorded anyway, even within such relatively low cell counts. 

The identification of 200 diatom cells and 200 desmids cells per sample was done 

separately, due to slightly different methodological approaches in the species determination. 

Desmid species were identified in the light microscope 400× magnification, right from the 

samples preserved by Lugol´s solution. To identify diatom species, the morphology of diatom 

frustule (i.e. silicate cell wall) is crucial. Therefore, diatom species were always determined at 

1000× magnification, from permanent slides which were made by the method of annealing 

over a gas burner flame (Battarbee et al., 2001). This method leads to removal of all cell 

organic material, and thus it makes the structure of diatom frustule better visible. The method 

of annealing over a gas burner flame does not provide such clear permanent slides in 

comparison to the method of oxidation using hydrogen peroxide or other acids, but the 

resulting slides were still good enough for species identification for the purpose of this study. 

Moreover, while using the method of annealing over a gas burner flame, the frustules are 

usually not destroyed and whole colonies do not fall apart, in comparison with the use of the 

chemicals. After the protoplast removal, the prepared cover slip with empty diatom frustules 

was put into the synthetic resin Naphrax (Brunel Microscopes Ltd. Wiltshire, UK). Naphrax is 

a mounting medium that increases refractive index (Flemming, 1954), so the structural details 

of diatom frustule are even more highlighted. Unfortunately, the identification of diatom 

species from the permanent slides makes it impossible to distinguish between living and dead 

diatoms (meaning at the moment of sampling). However, in this study, the short-term 

temporal variability was not explored at all. Thus, it did not really matter if some dead cells 

were occasionally counted within 200 determined cells. All species had most probably lived 

during the investigated year. The dead desmid cells, which rarely occurred in the samples, 

were also counted. 

 The identification of diatom species was done using the standard taxonomic 

monographs: Kramer & Lange-Bertalot (1986, 1988, 1991a, 1991b), Krammer (2000, 2002, 
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2003), Lange-Bertalot & Metzeltin (1996), Lange-Bertalot (2001), Lange-Bertalot et al. 

(2011). The identification of desmid species was done using these standard taxonomic 

monographs: Růžička (1977, 1981), Lenzenweger (1996, 1997, 1999, 2003), Coesel & 

Meesters (2007). 

 

2.3 Statistical analyses 

2.3.1 Datasets 

As it has been already mentioned, the statistical analyses of epiphyton associated with 

different types of natural plant substrates concern mainly the diatom and desmid community 

structure. A total of 200 diatom cells and 200 desmid cells per sample were examined. The 

resulting datasets were prepared separately for diatoms and desmids and comprised of all 

determined cells including the rare species. Therefore no standardization of species data was 

necessary. Identical analyses were done separately for each dataset in the majority of cases, 

allowing the indirect comparison of the discovered trends of both algal communities. The 

only exception was the Procrustes statistic (Chapter 2.3.6) where both datasets were used at 

once, for the purpose of the direct comparison. The analyses were conducted in the software 

PAST - ver.2.17c (Hammer et al., 2001) and R - ver. 2.15.1 (R Core Team, 2012) using the 

vegan package (Oksanen et al., 2012).  

Basically, the statistical analyses were done using the complete datasets and the 

reduced datasets (Table 3, more details in Appendix 3). In total, there were 171 samples 

collected, but afterwards the reduction of the number of samples in the datasets was 

appropriate to obtain the relevant results. Firstly, all samples with very low algal abundances 

(i.e. samples where less than 200 diatom cells, or less than 200 desmids cells, were found on 

five slides) were excluded from further analyses. Thus, the complete datasets comprised of all 

samples that could be eventually used. Out from 171 samples, the complete diatom dataset 

contained 170 samples from 15 sites and 8 genera of host plants. The complete desmid dataset 

contained 141 samples from 13 sites and 8 genera of host plants. However, as it can be seen 

from Table 2, the complete datasets were very fragmented due to the absence of some 

macrophyte taxa at the sites. If a dataset with many host plants missing is used e.g. for 

PERMANOVA (one of the most important analyses done within this theses; Chapter 2.3.2), it 

might consequently provide some misleading results. Thus, the best way to perform the 

analyses was to extract a near complete subset from the data. It was important to use the sites  
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Table 3 List of datasets with species richness recorded within the determination of 200 cells per sample. Note 

that 50 samples in the reduced datasets are not the same for both algal groups, whereas 140 samples in the 

Procrustes complete dataset and 49 samples in the Procrustes reduced datasets are exactly the same.   

  datasets   no. of samples no. of sites no. of hosts no. of species 

  all collected samples  171 15 8 - 

  complete   diatoms 170 15 8 171 

   desmids 141 13 8 161 

  reduced   diatoms 50 5 4 106 

   desmids 50 5 4 103 

  Procrustes complete   diatoms 140 13 8 152 

   desmids 140 13 8 161 

  Procrustes reduced   diatoms 49 5 4 102 

   desmids 49 5 4 102 

 

 

and the host plants with the highest possible overlap, which in this case included the sites 

(Swamp 3, tůň u Klůčku, pískovny Cep 3, Rybníčky u Podbořánek 1, Ďáblík 1) where three 

or more of Sphagnum, Utricularia, Nymphaea and Potamogeton were sampled (Table 3). 

Only the samples from the year 2012 were considered because the data from 2011 were 

limited. These so called the reduced datasets contained only 50 samples from 5 sites and 4 

genera of host plant. Note that the reduced datasets of diatoms and desmids were numerically 

equal, but they differed in one sample (2-D1-SP3 was included only for diatoms, 2-TK-UT2 

only for desmids; see Appendix 3).  

It was decided that the reduced datasets were the most appropriate for the analysis 

done within this thesis. The only exception was again the Procrustes statistics. This test was 

carried out twice, firstly using the reduced datasets, and secondly using the complete datasets 

to aid any potential generalisation of algal community trends. The datasets for the Procrustes 

statistic needed some additional reductions as the analysis generally requires that datasets 

being compared contain exactly the same objects. Therefore only the samples where both 200 

diatom cells and 200 desmid cells were found were included. The complete datasets were 

pruned to 140 samples from 13 sites and 8 genera of host plant and the reduced datasets were 

pruned to 49 samples from 5 sites and 4 genera of host plant.  

 

2.3.2 Effects of individual factors on epiphyton 

The first part of the statistical evaluation was done to estimate the effects of individual 

factors on the algal epiphytic community. This was tested using a permutational multivariate 
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analysis of variance (the permutational MANOVA or PERMANOVA, formerly called 

nonparametric MANOVA; Anderson, 2001, 2005; McArdle & Anderson, 2001). The analysis 

is run by the function adonis which is implemented in the vegan package in R software. 

PERMANOVA is distribution free and it is a robust alternative to parametric MANOVA and 

redundancy analysis (Legendre & Anderson, 1999). PERMANOVA works with two matrices. 

Firstly, the distance matrix is calculated from the original species data matrix according to 

selected distance measure. The second matrix contains the tested factors. PERMANOVA 

partitions the variation attributed to the factors sequentially, meaning that the factors and their 

mutual effects are tested in the same order as they are stated in the model (i.e. adonis 

formula). By creating several models with different order of factors, this approach leads to the 

determination of a pure effect for an individual factor (always the factor that is quoted as the 

last one in the model). Its significance is assessed by the permutation test with pseudo F 

ratios.  

In this study, PERMANOVA considering the factors site, host, pH and conductivity 

was done to quantifying patterns of variation in the epiphytic community structure and species 

richness. The analysis was run separately for diatoms and desmids. For each PERMANOVA, 

two matrices were prepared based on the reduced datasets (50 samples from 5 sites and 4 

genera of host plant). The first matrix contained the community structure of particular algal 

group, respectively the data of species richness, and the second one was the matrix with coded 

factors (site and host plant) and numerical environmental parameters (pH and conductivity). 

No data transformation was needed. The analyses were conducted using Bray-Curtis 

similarity index for the community structure and Euclidean distance for the species richness. 

Bray-Curtis index (Bray & Curtis, 1957) belongs to the most widely used index in ecological 

analysis (Clarke, 1993). It takes into account both species and their abundance, moreover it 

can cope with the prevalence of rare species or zeros in the data. The Euclidean distance is 

suitable for the univariate analysis (Anderson, 2005). All tests were done using 999 

permutations. 

As previously mentioned, the PERMANOVA results assess the proportion of 

explained variation, so called coefficient of determination (R
2
). However, R

2
 is dependent on 

the degrees of freedom that every factor has. If the degrees of freedom differ between the 

factors, as in the case of this research, R
2
 values are not comparable. Therefore, it is 

appropriate to recount the R
2
 values to the adjusted R

2 
that take account of the number of 

samples and degrees of freedom (Peres-Neto et al., 2006). The calculation was done using the 
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function RsquareAdj which is again implemented in the vegan package in R software. The 

adjusted R
2 

are given in the thesis in addition to the R
2
 values.  

To support and indirectly illustrate the PERMANOVA results, non-metric 

multidimensional scaling (NMDS) was performed in PAST software. NMDS is a widely used 

ordination analysis to show the species composition patterns in the dataset (Kruskal, 1964; 

Clarke, 1993; Legendre & Legendre, 1998). NMDS basically transforms multidimensional 

space, in which the data are, to the three-dimensional or two-dimensional space. 

Simultaneously NMDS preserves the distance relationships among the data based on chosen 

similarity index. It can be easily plotted in the diagram where each point represents one 

sample from the dataset. The distance between the points exposes the dissimilarity between 

them. In other words, the closer points are, the more similar the community structures of 

given samples are. The analysis also allows grouping the samples according to the selected 

criterion. The groups are then illustrated by different symbols and colours.  

In this study, since the Kruskal´s stress values representing reliability of NMDS (Borg 

& Groenen, 2005) were not very high, the two-dimensional diagrams were done using Bray-

Curtis similarity index. For completeness, the coefficients of determination (R
2
) for each axis 

are given in the graphs. The analyses were run always separately for diatoms and desmids. 

The 50 samples from the reduced datasets, which were used for PERMANOVA, were divided 

into the groups reflecting the factor site, host plant, plant architecture or pH. The plant 

architecture was included as a factor to verify whether or not to use it in PERMANOVA. The 

factor conductivity was not used in the end. The reason was that two out of three set 

categories of conductivity mostly contained the samples just from one site and thus the 

NMDS ordination diagram did not provide any contribution. For example the third category, 

in which conductivity were higher than 200 μS/cm, contained 10 samples only from the site 

Rybníčky u Podbořánek 1.  

 

2.3.3 Analyses of epiphytic species diversity  

The community structure of algal epiphyton was also explored by using diversity 

indices, in order to support the results obtained from PERMANOVA and to provide more 

information about the epiphytic community. In addition to species richness, which is equal to 

the number of taxa found in the sample, Shannon diversity index (Shannon & Weaver, 1949) 

was used. This index takes into account both species richness and relative abundances of 
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particular species (i.e. number of individuals of particular species), and thus express the 

evenness of community. Shannon diversity index varies from 0, indicating a complete 

dominance by a single species, to higher values, meaning that there are more species in the 

community and that their relative abundances are lower (Legendre & Legendre, 1998). In this 

study, the diversity indices were calculated using all 200 determined cells per sample (either 

diatoms or desmids), and they were calculated for every sample from the reduced datasets. 

The analyses, including calculation of indices, following formal tests and graph generation, 

were carried out in PAST software, always separately for diatoms and desmids.  

First of all, the datasets of species richness and the datasets of Shannon diversity 

indices were tested for normality by the Shapiro-Wilk test (Shapiro & Wilk, 1965), which is 

so far the most powerful test to investigate the normality of data (Razali & Wah, 2011). Since 

three out of four datasets were not normally distributed (species richness of diatom samples, P 

= 0.04; species richness of desmid samples, P = 0.04; and Shannon diversity indices of 

desmid samples, P = 0.004), further analyses were performed using nonparametric tests. It 

could be claimed only about one dataset that it came from the normal distribution (Shannon 

diversity indices of diatom samples, P = 0.1), nevertheless the nonparametric tests were done 

in all cases to reach the comparability of the results. The nonparametric tests are common 

alternatives to parametric tests such as t-test or ANOVA, but they do not assume any data 

distribution. The nonparametric tests are based on ranks of observations, and thus work with 

median and range instead of mean and variance, and they remain valid even for very small 

datasets (Legendre & Legendre, 1998).  

The particular indices were divided into the groups identically to the approach of 

NMDS. The groups reflected the factor site, host plant, plant architecture or pH, and the 

factor conductivity was not used. As described earlier, the differences in diversity indices 

between particular groups were examined by nonparametric tests. The Mann-Whitney test 

(Mann & Whitney, 1947) was used to compare two groups, e.g. complex and simple plant 

architecture. To compare more than two groups, e.g. different host plants, the Kruskal-Wallis 

test (Kruskal, 1964) with post-hoc Mann-Whitney pairwise comparisons using Bonferroni 

correction (Rice, 1989; Cabin & Mitchell, 2000) was performed. Both tests have a similar null 

hypothesis, saying that the medians of the groups are the same. Additionally, boxplots were 

created to illustrate the differences in the diversity indices of individual groups, since boxplots 

can easily show the mean, upper and lower quartiles, minimum and maximum, alternatively 

outliers (Williamson et al., 1989). 
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The formation of separate categories based on pH or conductivity (highly problematic 

in case of this thesis) is generally unnatural because these parameters are continuous. Thus, it 

was appropriate to test the relationship between diversity indices and one of environmental 

variables by using simple linear regression (Legendre & Legendre, 1998). The model is 

performed if it is known which of the variables is explanatory (independent) and which is 

explained (dependent). The relationship between selected variables is given by the correlation 

coefficient (r), coefficient of determination (R
2
) and in this case the straight regression line, 

which is based on the method of least squares (i.e. the shortest possible distances between 

data and regression line that represents the model). The null hypothesis of linear regression is 

that there is no relationship between selected variables, in other words that the slope of 

regression line is equal to zero. The method of linear regression, however, cannot show the 

pure effects of individual factors like PERMANOVA, therefore the explanatory variable itself 

could be correlated with other parameters and the interpretation of the results may not be so 

straightforward. 

 

2.3.4 Substrate specificity of epiphytic species 

 The second question of this thesis was whether particular algal taxa show the substrate 

specificity. The correct interpretation of the results of such an analysis partly depends on the 

PERMANOVA outcomes. To be in good agreement with PERMANOVA, the same reduced 

datasets (50 diatom samples, alternatively 50 desmid samples) were used again. In contrary, 

the substrate specificity analysis based onthe complete datasets (171 diatom samples, 

alternatively 140 desmids samples) would be rather questionable. The reason is that in general 

there would be no report of the macrophyte influence on the complete datasets. Therefore 

those results are not included in the thesis. 

 In this work, only the 25 % most abundant species from each dataset were considered 

as relevant for the ecological analysis (Heino & Soininen, 2010). In addition species had to 

occur at least at two sites in order to exclude species unique to a particular sample or site. 

Such criteria were considered to be important for finding species suitable for the substrate 

specificity analysis. The substrate preferences of chosen 25 diatom species and 18 desmid 

species were examined by the correlation using the Kendall rank correlation coefficient 

(Kendall´s tau; Kendall 1938). Kendall´s tau has confident intervals which are more reliable 

than the alternative nonparametric coefficient called Spearman´s (Newson, 2002). The 
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correlation measures the degree of association between two variables, in this case between the 

species abundance and host plant. The correlation coefficient (r) varies between +1 and -1 and 

reflecting positive and negative, respectively, dependence. Values closer to +1 or -1 indicate 

stronger correlations. If the value is around 0, there is no or very weak correlation. Finally, it 

is recommended that the significant substrate specificity, if any, must be compared with the 

findings of already published studies, as this may reveal a species to be ubiquitous if it also 

occurs in higher abundances on other substrates (Townsend & Gell, 2005).  

 

2.3.5 Comparison of algal group strategies 

 The last remaining analysis is the direct comparison of diatom and desmid epiphytic 

communities. To this point, all analyses were performed separately for diatoms and desmids, 

so the comparison of discovered trends could have been drawn only indirectly. The direct one 

was performed by the permutation test based on the Procrustes statistic (PROTEST; Legendre 

& Legendre, 1998; Peres-Neto & Jackson, 2001). The function procrustes is implemented in 

the vegan package in R software. PROTEST compares multivariate datasets by measuring the 

degree of their concordance. For this analysis, it is crucial to work with the datasets 

concerning exactly the same objects. The Procrustean superimposition approach (Gower, 

1971) is a method which utilises the raw data matrices, or alternatively similarity or distances 

matrices (provided by e.g. NMDS), which are scaled and rotated in order to minimize the sum 

of squared distances between corresponding objects of the two matrices, and thus to maximize 

their fit. The correlation coefficient (r) and the significance of the non-randomness of the 

evaluated congruence are assessed by permutation tests. Additionally, the plot shows the 

differences between the two original matrices. Each object is visualized twice in the diagram 

and the distance between them represents the extent of their congruence.  

In this study, the distance matrices based on a Bray-Curtis similarity index were taken 

from the two-dimensional NMDS. The Procrustes analysis using 999 permutations was done 

for the reduced datasets pruned to 49 samples, so that it worked with the datasets concerning 

exactly the same objects. In those samples, both 200 diatom cells and 200 desmid cells were 

found. Such an analysis was meant to support all indirect comparisons of both algal groups 

that could be made based on previous statistical analysis. In the same way, the complete 

datasets were pruned to 140 samples. By performing PROTEST for much greater datasets, the 

potential generalisation of algal community strategies can be reinforced even more. 
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3. Results 

3.1 General description of datasets and epiphytic species composition  

For the purpose of this thesis, epiphytic communities of diatoms and desmids 

associated with different types of natural plant substrates were sampled at 15 sites in the 

Czech Republic. A total of 171 samples were collected in 2011 and 2012. After that, algal 

community structure was examined and the datasets containing applicable samples were 

prepared separately for diatoms and desmids. Typically, identical analyses were done 

separately for each of the algal datasets, allowing the indirect comparison of the discovered 

trends for both algal groups. The only exception was the Procrustes statistic, where both 

datasets were used at once, in order to get direct comparison and confirmation of similarity or 

distinctness of algal group strategies.  

This study was based on algal morphospecies identified in the light microscope. 

Species lists from the complete datasets are included in Appendix 4 and 5. Basic information 

about all datasets, including recorded species richness, are provided in Table 3. The majority 

of analyses, which were done in this research, worked with the reduced datasets within which 

host plants were evenly represented at every site (Table 2). All samples in the reduced 

datasets came from the sampling in 2012. The reduced datasets of diatoms contained 50 

samples from 5 sites and 4 types of host plants. There were 106 recorded diatom species. The 

reduced dataset of desmids contained 50 samples from the same 5 sites and the same 4 types 

of host plants. There were 103 desmid species recorded. Note that 49 samples were the same 

for diatoms and desmids and thus could be used in the Procrustes analysis, but the diatom and 

desmid reduced datasets differed in the last sample (2-D1-SP3 was included only for diatoms, 

2-TK-UT2 only for desmids; see Appendix 3).  

The species composition and most common genera of the complete datasets are 

summarised in following paragraphs. Within 200 cell counts of particular algal group per 

sample, a total of 172 diatom species belonging to 40 genera (Appendix 4) and a total of 161 

desmid species belonging to 18 genera were identified (Appendix 5). Diatom species richness 

per sample ranged from 5 to 33 within in the samples collected in 2011, and from 2 to 36 in 

2012. Desmid species richness per sample ranged from 4 to 18 in 2011, and from 5 to 28 in 

2012. The reported species richness is in good agreement with other records of freshwater 

benthic diatoms and desmids from similar types of localities (Millie & Lowe, 1983; 

Poulíčková et al., 2004; Kuczyńska-Kippen et al., 2005; Neustupa et al., 2012; Svoboda et al., 
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2014). As given in Table 3, diatom species richness and desmid species richness were 

virtually the same. However, this finding is not general. For instance, two times as many 

desmid species as diatom species were identified in the study of Neustupa et al. (2013), in 

contrast to Krivograd Klemenčič et al. (2010) where exactly opposite results was mentioned, 

even though both studies were done in peatlands. Concerning lakes, Eminson & Moss (1980) 

registered much greater desmid species richness than diatom species richness in the sample 

from Otis Lake in Michigan, whereas they found more diatom species and no desmid species 

in the samples from Hickling Broad in Norfolk. Of course any reported species richness is not 

absolute. It is hardly achievable to know the absolute number of species in a community, but 

for ecological analysis it is not necessary at all. In any case, the abundant species are surely 

recorded and as such they are the most important for analyses (Heino & Soininen, 2010). 

In this study, the most frequent diatom genera in the complete dataset were Pinnularia 

(40 recorded species) and Eunotia (27 species), followed by Gomphonema (12 species) and 

Nitzschia (11 species). These genera contain many species and are common in freshwater 

benthic microhabitats. On the other hand, the genera Amphora, Caloneis, Cymbopleura, 

Denticula, Epithemia, Fallacia, Hippodonta, Chamaepinnularia, Lemnicola, Luticola, 

Placoneis, Planothidium, Pseudostaurosira, Rhopalodia, Staurosira and Staurosirella were 

represented by a single species in the complete dataset. It is also important to note that large 

genera that have been split, such as Achnanthes (Bukhtiyarova, 2007, 2008; Guiry, 2015), 

Fragilaria (Williams & Round, 1987; Guiry, 2015), and Navicula (Guiry, 2015), and their 

related genera, were quite common in the samples of epiphyton. For instance, there were 4 

species identified as cf. Achnanthes. Furthermore, this group included Achanthidium (3 

species), Rossithidium (3 species) and rarely present genera Lemnicola and Planothidium. 

Other acidophilic genera, e.g. Brachysira, Frustulia and Tabellaria, were also present in the 

samples.  

The most frequent desmid genera in the complete dataset were Cosmarium (50 

recorded species), Closterium (27 species), Staurastrum (26 species), followed by Euastrum 

(14 species) and Staurodesmus (10 species). These genera belong to the most diversified ones 

and are very common in freshwater benthic microhabitats. The acidic sites also provided a 

good condition for the occurrence of several species of Actinotaenium, Micrasterias and 

Tetmemorus. Rarely, the genera Bambusina, Haplotaenium, Hyalotheca, Netrium, Penium, 

Spondylosium and Teilingia appeared, but these genera are known for relatively lower species 

diversity in comparison to those previously listed. Thus, such a result could have been 
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predicted. Although taxonomical revision of desmids based on a combined approach is 

required as suggested by e.g. Gontcharov & Melkonian (2008, 2011) and Nemjová et al. 

(2011), traditional morphospecies and genera remain used in ecological studies and 

biomonitoring to date.  

 

3.2 Effects of individual factors on epiphyton 

As discussed in the introduction, there are many reported cases of the macrophyte 

influence on associated epiphyton in fresh waters. These studies usually assumed right from 

the beginning that host plants, as biologically active substrates, affected associated epiphyton, 

and subsequently the researchers wanted to explain how. But is there actually any significant 

influence of host plant compared to other factors which apparently affect benthic 

microorganisms? To answer this core question, the comparison of influence of substrate (host 

plant), space (site) and environmental parameters (pH and conductivity) on epiphytic 

community structure and species richness was carried out. The analyses used the reduced 

datasets, always separately for diatoms and desmids. 

The partitioning of variation in algal communities was performed by PERMANOVA. 

The results of individual tests are summarized in Table 4-7. Only the pure effects of particular 

factors and residuals (i.e. remaining unexplained variation) are noted. In addition to the R
2
 

values that are highly dependent on the degrees of freedom that every factor has, the adjusted 

R
2 

values, which are comparable to each other, are given. As evident from Table 4-7, site was 

always the factor explaining the greatest part of the variation in the data. It explained as much 

as 28 % (from adjusted R
2
) of the variation in diatom community structure (P < 0.001), 49 % 

of the variation in diatom species richness (P < 0.001), 39 % of the variation in desmid 

community structure (P < 0.001), and 27 % of the variation in desmid species richness (P < 

0.001). Other factors, including host plant, have to be reported as negligible. Even though 

they sometimes significantly explained the variation in the samples, the adjusted R
2
 was 

strikingly low or even had negative values, which are interpreted as equal to 0. The only 

noteworthy exception was conductivity, which explained just about 5 % of variation in diatom 

species richness, but the significance was obviously lower (P < 0.05) than the significance of 

the effect of site. On the other hand, the influence of conductivity was not significant within 

the diatom community structure analysis. It is unclear why conductivity only affected the 

diatom species richness. In any case, the mild effect of the environmental parameters is not  
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Table 4 Results of individual PERMANOVA tests that partitioned the variation in diatom community structure. 

For each factor, only the pure effect is given. The analysis was conducted using the Bray-Curtis similarity index 

and 999 permutations. *** P < 0.001, ** P < 0.01, * P < 0.05 

factor df sums of squares F ratio R
2
 adjusted R

2
 P value 

site 4 6.17 10.98 0.34 0.28 *** 

host plant 3 1.28 3.03 0.07 0.01 *** 

pH 1 0.39 2.74 0.02 0.00 *** 

conductivity 1 0.17 1.24 0.01 -0.01  

residuals 40 5.62 - 0.31 - - 

 

 
Table 5 Results of individual PERMANOVA tests that partitioned the variation in diatom species richness. For 

each factor, only the pure effect is given. The analysis was conducted using the Euclidean distance and 999 

permutations. *** P < 0.001, ** P < 0.01, * P < 0.05 

factor df sums of squares F ratio R
2
 adjusted R

2
 P value 

site 4 1288.21 13.72 0.53 0.49 *** 

host plant 3 104.13 1.48 0.04 -0.02  

pH 1 42.91 1.83 0.02 0.00  

conductivity 1 178.69 7.61 0.07 0.05 * 

residuals 40 938.8 - 0.39 - - 

 

 
Table 6 Results of individual PERMANOVA tests that partitioned the variation in desmid community structure. 

For each factor, only the pure effect is given. The analysis was conducted using the Bray-Curtis similarity index 

and 999 permutations. *** P < 0.001, ** P < 0.01, * P < 0.05 

factor df sums of squares F ratio R
2
 adjusted R

2
 P value 

site 4 8.26 18.40 0.44 0.39 *** 

host plant 3 0.96 2.84 0.05 -0.01 *** 

pH 1 0.33 2.92 0.02 0.00 ** 

conductivity 1 0.33 2.96 0.02 0.00 ** 

residuals 40 4.49 - 0.24 - - 

 

 
Table 7 Results of individual PERMANOVA tests that partitioned the variation in desmid species richness. For 

each factor, only the pure effect is given. The analysis was conducted using the Euclidean distance index and 

999 permutations. *** P < 0.001, ** P < 0.01, * P < 0.05 

factor df sums of squares F ratio R
2
 adjusted R

2
 P value 

site 4 549.6 10.06 0.33 0.27 *** 

host plant 3 89.47 2.18 0.05 -0.01  

pH 1 1.26 0.09 0.00 -0.02  

conductivity 1 2.32 0.17 0.00 -0.02  

residuals 40 546.13 - 0.33 - - 
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that unexpected since the sampling sites were chosen to be as similar as possible, in order to 

fall under the category of oligotrophic and mesotrophic sites.  

In order to support and graphically illustrate the results from PERMANOVA, as well 

as to further explore the epiphytic community patterns, other analyses followed. Firstly, two-

dimensional NMDS ordination plots were made. The results reflected the factors site, host 

plant, plant architecture and pH. The factor conductivity was not examined by NMDS as it 

was not really possible to create suitable categories. Regarding the factor plant architecture 

(i.e. substrate complexity), PERMANOVA did not reveal any sufficient effect of host plant to 

investigate whether or not plant architecture affects the associated epiphytic community. 

Nevertheless, the factor plant architecture was added to NMDS and other following analyses 

to support the decision not to include this factor in PERMANOVA.  

Secondly, the differences in species richness and Shannon diversity indices between 

particular groups of samples were investigated using nonparametric tests (Mann-Whitney test 

or Kruskal-Wallis test). The division of diversity indices to the groups was made according to 

each of the factors site, host plant, plant architecture or pH, identically to the division for 

NMDS. Species richness has already been investigated in terms of variation partitioning by 

PERMANOVA, whereas this time the analyses of chosen diversity indices show exact 

numbers belonging to a particular group of samples (e.g. particular site). Additionally, the 

relationship between diversity indices and numerical environmental variables (pH and 

conductivity) were tested using linear regression. Each time the reduced datasets were 

included in the analyses, as in PERMANOVA. The analyses were performed again separately 

for diatoms and desmids. The results of these supportive analyses are summarized in 

following chapters. 

 

3.3 Effect of site 

As mentioned previously, the factor site explained the greatest part of the variation in 

the data. The comparison of NMDS plots in Fig. 5 with the others (Fig. 8, 9, 12) clearly 

reinforced the outcome of PERMANOVA. The groups representing particular sites in Fig. 5 

are well separated. Such a distinct spatial pattern was also visualized in other studies 

concerning microphytobentos (Eminson & Moss, 1980; Svoboda et al., 2014).  

Moreover, it is again evident from the investigation of diversity indices that the factor 

site plays a crucial role in determining epiphytic community. Regarding diatoms, there was  
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Fig. 5 NMDS ordination plots of samples collected at different sites. The Bray-Curtis similarity index was used. 

The analysis was performed separately for (A) diatoms and (B) desmids. The graph legend applies for both plots.  

 

significant difference among sites (Fig. 6) in species richness (Kruskal-Wallis test, P < 0.001), 

as well as in Shannon diversity indices (Kruskal-Wallis tests, P < 0.001). The post-hoc Mann-

Whitney pairwise comparisons using Bonferroni correction revealed that sites were split into 

two groups that differed in species richness. The first group was represented by the sites 

Rybníčky u Podbořánek 1 (P1) and Ďáblík 1 (D1), which are characterized as oligo-

mesotrophic ponds with higher values of species richness. The second distinct group was 

made by Swamp 3 (S3), tůň u Klůčku (TK) and pískovny Cep 3 (C3), which are all peatland 

pools and have lower species richness probably due to more acidic conditions. But the 

analyses of Shannon diversity indices did not separate the groups according to the site 

characteristic. The overall significance of Shannon diversity indices analysis was basically 

determined by just a couple of differences (both with P = 0.02), i.e. between pískovny Cep 3 

(C3) and Rybníčky u Podbořánek 1 (P1), and then between pískovny Cep 3 (C3) and Ďáblík 1 

(D1), as displayed in Fig. 6.  

 The analyses of desmid datasets did not show a distinct division between peatlands 

and lakes either. The difference in desmid species richness and Shannon diversity indices 

among sites (Fig. 7) were overall significant (Kruskal-Wallis test, both P < 0.001). The 

pairwise comparisons indicated that Rybníčky u Podbořánek 1 (P1) and Swamp 3 (S3) were 

significantly different in both diversity indices from all the other sites except for the site  

 



35 

 

Fig. 6 Illustrated comparison of (A) species richness and (B) Shannon diversity indices of diatoms among 

individual sites. The differences among sites were significant in both cases (Kruskal-Wallis tests, P < 0.001). 
 

Fig. 7 Illustrated comparison of (A) species richness and (B) Shannon diversity indices of desmids among 

individual sites. The differences among sites were significant in both cases (Kruskal-Wallis tests, P < 0.001). 

 

pískovny Cep 3 (C3). The site Swamp 3 (S3) was characterized by the lowest values of 

species richness and Shannon diversity indices, probably due to severe acidic and oligotrophic 

conditions which favoured the occurrence of few adapted species that fully dominated the 

desmid community (as in Mataloni, 1999). The narrow range of boxplot quartiles of Rybníčky 

u Podbořánek 1 (P1) refer to the finding that the samples from this site had very similar 

species richness in majority, even though all host plants were present and pH values ranged 

from more acidic to neutral conditions. Therefore, some other undetected factor may 

determine the specific pattern of species richness of the desmid community at Rybníčky u 

Podbořánek 1 (P1).  
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3.4 Effect of host plant  

In contrast to Fig. 5 where NMDS shows distinct spatial pattern of epiphyton, the 

groups representing host plants in Fig. 8 substantially overlap. Also, no compelling 

differences in algal species richness and Shannon diversity indices were detected among 

different types of host plants (Kruskal-Wallis tests, all non-significant; Fig. 10 and Fig. 11). 

Therefore, this outcome strongly corroborated the results of PERMANOVA. It does not 

matter from which type of macrophyte growing within one site the epiphyton is sampled, but 

where (i.e. from which of the sites) the sample is taken.  

Since PERMANOVA did not reveal any remarkable effect of host plant on associated 

epiphyton, it was not worth exploring from where the influence comes (e.g. substrate 

complexity, biological and chemical interactions). Although it has been suggested that 

Sphagnum and Utricularia, as more complex substrates, should support more diverse 

epiphytic communities, the investigating of the influence of plant architecture by NMDS and 

other supportive analyses confirmed the outcome of PERMANOVA. For better visualisation, 

the NMDS diagrams reflecting different types of plant architecture are presented in Fig. 9. It 

may appear that there was some influence of degree of substrate complexity, however, the 

convex hulls largely overlap and the greater range of the samples from complex substrates is 

mostly caused by single outlying samples, i.e. the samples with a very distinct community 

structure. See for example the single sample located at the bottom left of the desmid graph 

(Fig. 9, plot B). This sample alone adds approximately one third to the resulting convex hull 

of complex plant architecture and so it makes the convex hull optically bigger. Without such 

exceptions, the convex hulls are more or less similar in size. 

With regard to diversity indices, although it may appear from Fig. 10 that Sphagnum 

(SP) and Utricularia (UT) had wider ranges of diatom species richness values and that 

Sphagnum (SP) had a wider range of Shannon diversity indices than other macrophytes, the 

Mann-Whitney tests did not reveal any significant dissimilarity between complex (Sphagnum 

and Utricularia) and simple (Potamogeton and Nymphaea) substrates. As can be observed in 

Fig. 11, the diversity indices of the desmid community should not differ between complex and 

simple substrates. The non-significant Mann-Whitney tests again confirmed this prediction 

(box plots not presented).  
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Fig. 8 NMDS ordination plots of samples collected from different host plants. The Bray-Curtis similarity index 

was used. The analysis was performed separately for (A) diatoms and (B) desmids. The graph legend applies for 

both plots.  

 

 

 

Fig. 9 NMDS ordination plots of samples reflecting the host plant architecture (complex or simple). The Bray-

Curtis similarity index was used. The analysis was performed separately for (A) diatoms and (B) desmids. The 

graph legend applies for both plots.  
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Fig. 10 Illustrated comparison of (A) species richness and (B) Shannon diversity indices of diatoms among the 

types of host plant. The Kruskal-Wallis tests were non-significant. 

 

Fig. 11 Illustrated comparison of (A) species richness and (B) Shannon diversity indices of desmids among the 

types of host plant. The Kruskal-Wallis tests were non-significant. 

 

 

3.5 Effect of environmental parameters 

According to many published studies, which were outlined in the introduction 

(Chapter 1.1), pH and conductivity often influence the microalgal benthos. However, 

PERMANOVA done within this work revealed that environmental parameters had the effect 

of almost no significance. The only exception was conductivity, which explained barely 5 % 

of variation in the diatom species richness (P < 0.05). Nevertheless, following analyses of the 

effects of pH and conductivity provided some interesting results, mainly with regard to the 

diversity indices characterizing epiphytic communities.  
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As can be seen from the NMDS plots dividing samples according to the pH categories 

(Fig. 12), it is likely that the samples with pH lower or equal to 5 contained less diverse 

diatom and desmid communities, probably due to the more acidic conditions leading to the 

presence of specialized algal communities where few species dominate the entire community 

(as in Mataloni, 1999). Desmids in the samples with pH lower or equal to 5 formed a remote 

group on the left, and just a few samples felt in the range of other pH categories (Fig. 12, plot 

B). In case of diatoms, the samples with pH lower or equal to 5 followed mildly similar trend 

like desmids, however the distance between the group on the left and other samples is not that 

big (Fig.12, plot A). 

 

 

Fig. 12 NMDS ordination plots of samples divided in the groups reflecting pH. The Bray-Curtis similarity index 

was used. The analysis was performed separately for (A) diatoms and (B) desmids. The graph legend applies for 

both plots.  

 

The identical results, conforming the presence of a distinct desmid community in more 

acidic conditions, were provided by the analyses of species richness (Kruskal-Wallis test, P < 

0.001) and Shannon diversity indices (Kruskal-Wallis test, P < 0.001), illustrated in Fig 14. 

The overall significance was indeed defined by the difference between the category of pH less 

or equal to 5 and the other categories, in cases of both diversity indices (the post-hoc Mann-

Whitney comparison, both P < 0.001). Yet the Kruskal-Wallis tests, ascertaining the 

differences in diatom species richness and Shannon diversity indices among pH categories, 

ended up showing no significant influence by pH (see also Fig. 13).  
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Fig. 13 Illustrated comparison of (A) species richness and (B) Shannon diversity indices of diatoms among the 

categories of pH. The Kruskal-Wallis tests were non-significant in both cases. 

 

Fig. 14 Illustrated comparison of (A) species richness and (B) Shannon diversity indices of desmids among the 

categories of pH. In both cases, the overall significance (Kruskal-Wallis tests, P < 0.001) was determined by the 

differences between the first category (pH less or equal to 5) and the other categories (the post-hoc Mann-

Whitney comparison, P < 0.001). 

 

Nevertheless, dividing into separate categories based on pH is generally unnatural 

because pH itself is a continuous parameter. Moreover, it was not really possible to set the 

categories based on conductivity without a reflected spatial effect. It is clearly visible in Fig. 

15 that certain values of conductivity were measured repeatedly (at the same site, at the sites 

lying in close proximity to each other, or at the sites of similar type) and other values are 

missing. Thus, it was appropriate to test the relationship between diversity indices and these 

environmental variables by using linear regression.  
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The results indicated that neither diatom species richness nor Shannon diversity 

indices were significantly dependent on pH. Further, there was no relationship between 

diatom species richness and conductivity (r = 0.08, R
2
 = 0.006, P = 0.59; Fig. 15), unlike in 

PERMANOVA where conductivity 

explained 5 % of variation in the diatom 

species richness (P < 0.05). Finally, 

linear regression did not show any 

significant relationship between diatom 

Shannon diversity indices and 

conductivity. With regard to desmids, 

species richness (r = 0.52, R
2
 = 0.27, P 

< 0.001) and Shannon diversity indices 

(r = 0.64, R
2
 = 0.42, P < 0.001) 

significantly depended on pH (Fig. 16), 

whereas neither species richness nor 

Shannon diversity indices were 

dependent on conductivity.  

 

 

Fig. 16 Linear regression of (A) species richness and (B) Shannon diversity indices of desmid communities 

depending on pH. The relationships were significant in both cases (P < 0.001).  

 

Fig. 15 Linear regression of diatom species richness 

depending on conductivity. The relationship turned out 

to be non-significant in contrast to the result of 

PERMANOVA.  
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To sum the results of linear regression up, only desmid species richness and Shannon 

diversity indices increased with pH, other relationships were not appreciable. The noticeable 

influence of pH on desmid communities was also demonstrated by comparing the diversity 

indices among the categories of pH. The inconsistency in the results of PERMANOVA and 

these analyses might be caused by the fact that PERMANOVA shows the pure effects of 

individual factors in contrast to the performed analyses of diversity indices, which cannot 

adequately separate the effects of individual factors. Environmental parameters, such as pH 

and conductivity, are often correlated with other factors that possibly enhance or hide the pure 

effect of pH and conductivity. 

 

3.6 Substrate specificity of epiphytic species 

Even though host plant as a factor seems to be unimportant for determining associated 

epiphytic communities in comparison to the spatial effect (i.e. differences among sites), few 

algal species could show substrate specificity. To get reliable results, it was decided to work 

only with the 25 % most abundant species from the reduced datasets and with those species 

that were found at two sites at least. Thus, only the abundances of chosen 25 diatom species 

and 18 desmid species were correlated with the investigated genera of host plants (Sphagnum, 

Utricularia, Potamogeton and Nymphaea). The results are summarized in Table 8 for diatoms 

and Table 9 for desmids, showing only significant correlations between particular algal taxa 

and host plants.  

Out of 25 diatom species, only Frustulia saxonica did not show any substrate 

preference, in contrast to as many as 9 out of 18 desmid species that were not substrate 

specific in any way. The rest of the species were either positively or negatively correlated 

with some of host plants. Considering just the most significant results (i.e. P < 0.001), diatoms 

species showed several substrate preferences, whereas from the desmid community 

Staurastrum punctulatum alone had a strong positive relationship to Sphagnum (r = 0.51, P < 

0.001) and a marginally significant negative correlation with the host plants Utricularia and 

Nymphaea (both r = -0.22, P < 0.05).  

By looking at the sums of all recorded significant correlations for each host plant, it is 

likely that there is no striking difference between the substrate types. Only in case of 

Sphagnum there are more negative correlations, and there are more positive correlations in 

case of Nymphaea, but the numbers of significant correlations were very low in general, so no 
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conclusion could be made based on such a result. To sum up, these findings again support the 

results of PERMANOVA that host plant does not play any crucial role in determining 

epiphytic community. 

 

 

Table 8 Substrate specificity of diatom species. Only the significant results of correlation using Kendall´s tau are 

presented, giving correlation coefficients and significance. *** P < 0.001, ** P < 0.01, * P < 0.05 

diatom species host plant 

  Sphagnum Utricularia Nymphaea Potamogeton 

  Achnanthidium minutissimum -0.20 *    

  Brachysira brebissonii -0.23 *  0.23 *  

  Brachysira neoexilis (morphotyp 1) -0.28 **   0.20 * 

  Brachysira neoexilis (morphotyp 2) -0.29 **  0.23 *  

  Encyonopsis cf. delicatissima -0.40 ***  0.30 **  

  Eunotia bilunaris var. bilunaris 0.29 **    

  Eunotia cf. arcubus -0.27 **  0.33 ***  

  Eunotia exigua 0.39 ***   -0.37 *** 

  Eunotia glacialis    -0.21 * 

  Eunotia implicata   0.36 ***  

  Eunotia incisa  -0.21 * 0.24 *  

  Eunotia paludosa 0.47 ***   -0.30 ** 

  Fragilaria construens  0.22 *   

  Fragilaria nanana -0.25 *    

  Frustulia saxonica     

  Gomphonema acuminatum -0.21 * 0.22 *   

  Gomphonema gracile -0.22 *  -0.25 * 0.35 *** 

  Gomphonema parvulum   -0.20 *  

  Kobayasiella sp. -0.24 *  0.21 *  

  Navicula radiosa  0.31 ** -0.24 *  

  Nitzschia sp. (morphotyp 1)    0.28 ** 

  Nitzschia sp. (morphotyp 4)    0.25 ** 

  Pinnularia pseudogibba 0.39 ***   -0.41 *** 

  Pinnularia subcapitata var. elongata 0.41 ***  -0.28 **  

  Tabellaria flocculosa  -0.23 * 0.25 **  

  no. of species - positive correlation 5 3 8 4 

  no. of species - negative correlation 10 2 4 4 
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Table 9 Substrate specificity of desmid species. Only the significant results of correlation using Kendall´s tau 

are presented, giving correlation coefficients and significance. *** P < 0.001, ** P < 0.01, * P < 0.05 

desmid species host plant 

  Sphagnum Utricularia Nymphaea Potamogeton 

  Closterium calosporum var. maius     

  Closterium incurvum     

  Closterium parvulum  0.28 **   

  Closterium striolatum    -0.27 ** 

  Cosmarium amoenum -0.24 * -0.21 * 0.25 * 0.21 * 

  Cosmarium discrepans -0.27 ** 0.22 *   

  Cosmarium goniodes     

  Cosmarium impressulum     

  Cosmarium regnellii     

  Cosmarium sp. (morphotyp 1)     

  Cosmarium sp. (morphotyp 2)     

  Cosmarium sphagnicolum -0.23 *    

  Cosmarium subcostatum var. minus    0.21 * 

  Pleurotaenium trabecula     

  Staurastrum punctulatum 0.51 *** -0.22 * -0.22 *  

  Staurastrum tetracerum -0.27 **    

  Tetmemorus granulatus     

  Tetmemorus laevis       -0.29 ** 

  no. of species - positive correlation 1 2 1 2 

  no. of species - negative correlation 4 2 1 2 

 

 

3.7 Comparison of algal group strategies 

Logically, all previously described results revealed mostly the same pattern in both 

diatom and desmid communities. The general trends are obvious, even though all analyses 

were performed separately for both algal groups and the resulting numbers may have differed 

slightly. Nevertheless, to support such a strong statement, the direct comparison of diatom and 

desmid epiphyton was done by the Proscrustes statistic. The analysis was first carried out 

using the reduced datasets (49 samples where both 200 diatom cells and 200 desmid cells 

were found). The Procrustes statistic essentially confirmed the previous indirect comparisons 

by demonstration of non-random congruence of both NMDS ordinations (r = 0.76, P = 0.001). 

Secondly, edited complete datasets (140 samples where both 200 diatom cells and 200 desmid 

cells were found) was used as well and verified the generalisation of similar algal community 

strategies (r = 0.68, P = 0.001). 
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The non-random congruence of diatom and desmid datasets is demonstrated in the 

resulting diagrams (Fig. 17). In majority, the changes of sample positions are organized. This 

can be easily seen in the diagram of the reduced dataset (Fig. 17, plot A). For instance, the 

samples within distinct groups stick more or less together, are kept in the same place, or move 

the same direction. The outlying samples with the clearly different community structure 

remain separated within both cases, i.e. diatoms (circles in the plots) and desmids (arrow ends 

in the plots). In conclusion, the trends within both algal groups are clearly similar. Thus, 

because diatoms and desmids are monophyletic and unrelated algal groups which usually 

represent the dominant in freshwater benthic microhabitats, there is an evidence for that these 

patterns are general for the entire microphytobenthos.  

 

 

Fig. 17 Graphical visualisation of the Procrustes analysis (using 999 permutations). The NMDS ordination plots 

reflect the superimposition of diatom (circles) and desmid (arrow ends) samples, and in this case the similarity of 

the group strategies. Only the samples where both 200 diatom cells and 200 desmid cells were found were used 

for the analyses, meaning (A) 49 samples from the reduced dataset that was used for PERMANOVA, (B) 140 

samples from the complete dataset.  
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4. Discussion 

4.1 Factors affecting epiphyton 

Despite the fact that there are many published studies assuming that host plant affects 

associated epiphytic community, probably through biological or chemical influences, there 

has always been a question whether there is any significant influence of host plant in 

comparison to other factors that substantially affect freshwater algal benthos. This Master´s 

thesis has documented the overwhelming effect of site and mild, but still noticeable, effect of 

environmental parameters on community structure of algal epiphyton. The effect of host plant 

appears to be almost imperceptible. This result concurs with already published studies that 

similarly investigated the effects of several factors on epiphyton at once, thus providing more 

objective and general view on ecology of epiphyton.  

At this point, it should be, however, made clear that the term site does not mean only 

the spatial pattern itself. It also incorporates the history of the locality, as well as any 

undetected abiotic and biotic factors with a spatial distribution (Borcard et al., 1992; 

Anderson & Gribble, 1998). Generally, freshwater benthic communities are spatially 

structured (Soininen et al., 2004; Pals et al., 2006; Machová-Černá & Neustupa, 2009; 

Krivograd Klemenčič et al., 2010; Neustupa et al., 2012, 2013; Svoboda et al., 2014), but 

unfortunately it is impossible to separate the pure spatial effect from the other unexamined 

factors in the analysis. Still, it could be claimed that it is most probably space that largely 

influenced the epiphytic communities, and thus the term site, respectively space, is referred in 

the thesis as the main driving force. Yet it might include any other undetected factor that is 

spatially structured.  

On the whole, the host plant itself had a negligible influence on associated epiphytic 

communities contrary to the remarkable influence of site and mild, but still noticeable, 

influence of environmental parameters. This finding matches to the studies concerning diatom 

or desmid epiphytic community structure (Eminson & Moss, 1980; Millie & Lowe, 1983; 

Pals et al., 2006; Cejudo-Figueiras et al., 2010). It is important to mention that the graphs in 

Pals et al. (2006) could be misleading. Although they present the differences among 

epiphyton associated with individual types of substrate, the illustrations were always made for 

each site separately, due to the occasional presence of different substrates at particular sites. 

Still there were reported much greater dissimilarities between epiphyton at different sites. On 

the other hand, Gough & Woelkerling (1976) and Woelkerling (1976) emphasized the host 
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plant effect even more, despite the fact that they found remarkable spatial effects as well. In 

this thesis, host plants were compared across the sites and the plots were made likewise to get 

more general trends. Nevertheless, it is apparent that if a more limited dataset (for example 

only the samples from one site) is used in the analysis, the effect of host plant on associated 

epiphyton could be occasionally enhanced and found as significant. The pattern might be well 

explained by stochasticity or various environmental conditions in the immediate vicinity of 

individual macrophyte, which are, however, hard to detect. This was partly corroborated 

within this thesis by performing preliminary analyses, which at each time included the subset 

of data from a single site. But, because the results lacked consistency among the sites, they 

were not reported here. Generally speaking, such methodology would possibly lead to the 

overestimation of host plant influence on associated epiphyton and subsequently to the 

speculation about the direct biological or chemical interactions between macrophytes and 

epiphytes, respectively about the indirect effect of plant architecture on epiphyton (as 

suggested in Blindow, 1987; Cattaneo et al., 1998; Laugaste & Reunanen, 2005). However, 

Siver (1977) and Cattaneo & Kalff (1979) found no influence of macrophytes, even though 

they sampled epiphyton at a single site, suggesting that the pattern is truly inconsistent among 

sites.  

With regard to strongly spatially structured epiphyton, it is obvious that host plants 

represent a lower level of spatial factor, below the level of the whole water bodies. Host 

plants are basically types of microhabitats, which could be found within a site. It was 

suggested in Taniguchi & Tokeshi (2004), and it appears to be logical, that diversity and 

abundance of microorganisms increase with complexity of habitat at a smaller scale. This is 

probably not valid for epiphyton investigated within this thesis. At first, it was also planned to 

incorporate the plant architecture (i.e. substrate complexity) as a factor to PERMANOVA, but 

later it was not necessary to do so. Theoretically, only if the host plant explained significant 

variation in the epiphytic community, it could be worth starting to search for a macrophyte 

characteristic that possibly produces the dissimilarity. Also, other analyses did not reveal any 

compelling influence of plant architecture on associated epiphytic community, which 

considerably supported the decision not to include plant architecture as a factor to 

PERMANOVA. Such a result is not in line with the studies reporting the effect of plant 

architecture (Bland & Brook, 1974; Kuczyńska-Kippen et al., 2005; Messyasz & Kuczyńska-

Kippen, 2006), even though all of them, including this thesis, concerned epiphytic community 

structure at several water bodies. However, Kuczyńska-Kippen et al. (2005) and Messyasz & 
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Kuczyńska-Kippen (2006) added that there was likely some combination of physico-chemical 

or biological factors closely related to the macrophytes which eventually affected epiphytic 

community. 

Even though there was no significant effect of host plant and its architecture on 

epiphytic community, this outcome does not refute the influence of microhabitat on benthic 

communities as such. It has already been shown that there are cases of substantial differences 

between microhabitats (Poulíčková et al., 2004; Soininen & Eloranta, 2004; Townsend & 

Gell, 2005; Veselá, 2009), and that heterogeneity of microhabitats substantially contributes to 

high local diversity of microorganisms (Ács et al., 2003; Zheng & Stevenson, 2006; Veselá & 

Johansen, 2009). The dissimilarities might be well enhanced if two very distinct types of 

microhabitats (i.e. biologically active macrophytes versus biologically inert substrates e.g. 

rock, sand, mud or wood) are studied. Other example of such a pattern was presented in the 

study of Pals et al. (2006), where it was found out that frequently desmid community on sand 

was significantly different from those associated with macrophytes. Further, there are studies 

recording the dissimilarity between epiphytic community associated with natural plant 

substrates and with the plastic models or slides (Siver, 1977; van Dijk, 1993; Albay & 

Akcaalan, 2003). The results of Soininen & Eloranta (2004) and Townsend & Gell (2005) 

indicated that host plants, as living, thus biologically active and instantly growing, organisms, 

are far more dynamic microhabitats and often undergo the changes which are not common for 

inert, hard substrates. Thus, the turnover of epiphytic community must have been profound, as 

well as repeated colonisation and primary succession. If all of this is valid, the effect of 

microhabitat might not be revealed within this thesis, because host plants (biologically active 

substrates) were compared just with each other. In that case, macrophytes would have the 

same effect on epiphyton, which would be obviously distinct from the effect of inert 

substrates. For instance, every macrophyte would release some nutrients for epiphyton.  

The studies concerning algal diversity in freshwater ecosystems usually emphasize on 

stronger effects of pH and conductivity on benthic algal communities, thus in general both of 

these environmental variables are surely important. In this study, the mild effect of pH and 

conductivity was reported, however it was not that unexpected since the sampling sites were 

chosen to be as similar as possible, i.e. to fall into the category of oligotrophic and 

mesotrophic sites. This criterion allowed findings that required overlap of host plants that 

were chosen for the study. It is supposed that if the sites with higher nutritional status or with 

other remarkably different limnological characteristic were involved in the study, the 
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environmental parameters would be more important, as described in Eminson & Moss (1980), 

Lalonde & Downing (1991) and Cejudo-Figueiras et al. (2010). However, Fránková et al. 

(2009) emphasized the importance of environmental gradients even within peatlands, i.e. sites 

still relatively alike, compared to the difference between peatlands and ponds which were 

explored within this thesis. Neustupa et al. (2013) found out that although the peatland 

sampling sites were very similar in terms of environmental parameters, the effect of pH and 

conductivity on diatom and desmid benthic communities was significant, and even greater 

than the spatial effect.  

With regard to the algal diversity indices, Mataloni (1999), Štěpánková et al. (2008) 

and Neustupa et al. (2009) presented the positive correlation between algal diversity and both 

pH and conductivity, in contrast to this thesis and the study of Neustupa et al. (2013), where 

algal species richness being rather positively correlated with pH, but not related to 

conductivity. Coesel (1982) claimed that the highest algal diversity should be detected in the 

middle part of trophic range thanks to the presence of both oligotrophic and eutrophic species. 

In this thesis, where trophy is partly reflected by the conductivity values, the pure effect of 

conductivity explained barely 5 % of variation in the diatom species richness 

(PERMANOVA, P < 0.05), otherwise the analysis did not reveal any remarkable effects. 

Similarly, no relationship of any algal diversity indices to conductivity was revealed by linear 

regression. Still, the entire trophy range of fresh waters was not investigated, so it is not 

possible to decide whether Coesel´s assumption (1982) would be relevant in case of algal 

epiphyton.   

 

4.2 Substrate specificity of epiphytic species 

The differences in epiphyton between host plants (both between types of host plants 

and plant individuals) may occasionally appear due to the distinct environmental conditions in 

the vicinity of every plant. Such conditions could be caused either by the environment itself 

(Pals et al., 2006), which is more probable regarding the results of this thesis, or by some 

plant influence (Gough & Woelkerling, 1976; Woelkerling, 1976). Both aspects might 

eventually explain the differences among the macrophytes within one water body, as reported 

in the studies where only single site was sampled (Blindow, 1987; Cattaneo et al., 1998; 

Laugaste & Reunanen, 2005). The distinct environmental conditions related to every plant 

must have subsequently led to the presence of infrequent “substrate specialists”. 
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As mentioned in the introduction, Sphagnum should be a substrate type that hosts 

relatively higher numbers of substrate specific taxa. It is probably through acidification of 

immediate Sphagnum proximity (Clymo, 1964; reviewed in Andrus, 1986). Therefore, 

individual algal species could prefer such conditions, or try to avoid them. According to the 

results of this thesis, the sums of recorded significant correlations for each host plant did not 

confirm the difference between Sphagnum and other macrophytes. Secondly, there are not 

many remarkable correlations between Utricularia and epiphytic algae. In the study of 

Prowse (1959), it was found out that Utricularia favour the presence of Gomphonema in 

contrast to the obvious absence of Eunotia species. In this thesis, there were many species of 

both genera recorded on Utricularia, thus Prowse´s results are most probably site specific. 

Ulanowicz (1995) suggested that Utricularia should enhance the growth of epiphyton on its 

surface, so that Utricularia can catch zooplankton that is attracted to swim closer to the plant 

traps. Ulanowicz´s model does not assume that particular algal species would preferably live 

on Utricularia, but it says that the growth of epiphytic community should be supported in 

general. If Ulanowicz´s idea is reliable, it might rather be the size and shape structure of the 

algal community that is more influenced by Utricularia to offer the best cell forms for 

predators to consume. Further, it is likely that algae associated with Nymphaea, respectively 

Potamogeton, need to be able to remain on the plant surface and to withstand more 

perturbations in the water column, in comparison to complex substrate that provide more 

closed or semiclosed refuges. The ability to form mucilage stalks is an example of the 

adaptation for cell attachment to the surface that could be found e.g. within the diatom genera 

Gomphonema or Eunotia. The performed correlation analyses, nevertheless, did not reveal the 

presence of such specialized algal species. Anyhow, there are no exceptionally different sums 

of significant correlations of algal taxa to particular macrophyte. The numbers are rather 

similar, but generally too low to come up with any obvious conclusion. 

Although the results of this thesis indicate that there were some significant correlations 

between algal species and particular host plant, the substrate specificity seems rather unlikely 

to be true. Concerning diatoms, for example Achnanthidium minutissimum, belongs to the 

frequent species occurring in many types of microhabitats where it is usually recorded in 

considerably high abundances (e.g. Eminson & Moss, 1980; Blindow, 1987; Poulíčková et al., 

2004; Townsend & Gell, 2005; Cejudo-Figueiras et al., 2010). Therefore, no substrate 

specificity of Achnanthidium minutissimum could be assumed. The same applies for the 

majority of other diatom and desmid species since there are published studies reporting that 
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the species was positively correlated with other type of microhabitat or occurred there in 

higher abundances (all summarized in Table 10). Concerning desmid species, the thesis 

assumes e.g. no substrate specificity of Cosmarium regnelii with regard to macrophytes, 

because there were no relevant correlations with any host plants. It is in good agreement with 

Messyasz & Kuczyńska-Kippen (2006) that reported significantly higher biomass of 

Cosmarium regnelii on Chara, and moreover the authors noted that Cosmarium regnelii is 

often present in the free water column. During the investigation within the thesis, there were 

planktonic species found from time to time, but they are believed to appear randomly in the 

samples, or they are present in the epiphyton which could serve as a temporal refuge 

(reviewed in Schindler & Scheuerell, 2002).  

The exceptions, i.e. taxa with significant preference to particulate macrophyte, based 

on the congruence of the thesis results and already published data, are Eunotia bilunaris, 

Eunotia exigua, Eunotia paludosa and Staurastrum punctulatum. They are likely specific to 

Sphagnum, but only in case when only the category of a host plant is considered. However, 

these species are also commonly presented in the sediment microhabitats (Pals et al., 2006; 

Machová-Černá & Neustupa, 2009; Veselá, 2009). The highly significant substrate 

preferences of Encyonopsis cf. delicatissima, Eunotia implicata and Pinnularia pseudogibba 

(see Table 8) are quite uncertain since there were found no references in the literature. 

Many authors (Eminson & Moss, 1980; Blindow, 1987; Messyasz & Kuczyńska-

Kippen, 2006; Cejudo-Figueiras et al., 2010) came with the unsurprising statement that some 

epiphytic species show substrate specificity, others do not. On the other hand, Siver (1977) 

found no substrate specificity of microalgae at all. It is hard to say if the findings of other 

mentioned studies are reliable because it is not always clear whether they worked with more 

abundant species presented at several sites, meaning whether species were not unique to a 

sample or site. Moreover, the reported so called substrate specificity could be rather 

connected to stochasticity associated with algal colonisation or competitive exclusion of 

species by better adapted taxa (Townsend & Gell, 2005). The conflicting results might have 

been also caused by the investigation of water bodies with distinct limnological characteristics 

as stressed by Eminson & Moss (1980). The authors suggested that the substrate specificity of 

epiphytic organisms should stronger in oligotrophic waters where limited nutrients force 

epiphytic organisms to adapt more effective nutrient uptake. This might explain the conflict 

within the evidence in already published data, but it is hard to assess since many papers do not 

include detailed limnological information.  
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In case of the thesis, there was no exceptional number of substrate specialists recorded 

even though many sampling sites were oligotrophic. On the whole, there were more than 100 

diatom species and 100 desmid species determined within the reduced datasets, still fairly low 

number of relevant substrate specificity was found. Therefore, the outcome of substrate 

specificity analysis reinforces the finding that the effect of host plant on associated epiphyton 

is almost negligible. 

 

4.3 Generalization of algal group strategies 

Since diatoms and desmids are monophyletic and unrelated algal groups, and they 

represent the dominants of microbenthos in given ecosystems (Chapter 1.6), the revealed 

group strategies are fairly suitable for further generalization. All indirect comparisons and the 

results of Procrustes statistics, which directly compared the diatom and desmid communities, 

indicated that the algal group strategies were generally identical. Such a congruence of 

benthic diatoms and desmids was previously reported in Neustupa et al. (2013). Therefore, 

both these studies conclude that the factors determining the community structure of 

microphytobenthos are mainly space (generally speaking of remarkable influence of site) and 

partly environmental conditions (pH and conductivity). The exceptions that should be 

considered are flagellates that are able to move easily over relatively bigger distances to the 

place with more favourable conditions (Happey-Wood, 1988; Hall & Pearl, 2011). However, 

diatoms and desmids are able to move as well and it still remains questionable whether 

flagellates could migrate to another microhabitat. Thus, it is believed that even benthic 

flagellates should follow the similar trends like diatoms and desmids.   

The species richness of diatoms and desmids seemed virtually the same when 

comparing datasets with similar numbers of samples. Yet more desmid samples had to be 

excluded from analysis because of a low algal abundance. Out from 171 samples that were 

collected for the purpose of this thesis, only a single diatom sample (2-TK-UT2) did not 

contain sufficient number of cells. In case of desmids, there were as many as 29 inapplicable 

samples. With regard to more often absence of desmids in the epiphytic community, one 

question appeared. How to treat the samples where particular algal group do not occur in 

adequate density? To my knowledge, it is feasible to take account of such samples if the 

absolute cell numbers or biomass is measured. If the relative abundances of species in the 

community are recorded, none of widely used statistical methods would take account for such 
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samples in a dataset appropriately. Therefore, these samples are not usually included in 

analysis, but the absence of cells itself seems to be relevant information about community 

pattern anyway. Unfortunately, no solution to this problem exists so far. In terms of this 

thesis, the absence of epiphytic desmids could possibly reflect unfavourable environmental 

condition at site (i.e. Ďáblík 2 and Rybníček u Studeného where all desmid samples were 

found to be inapplicable) or in the vicinity of individual macrophyte.  

The difference in number of diatom and desmid samples suitable for the investigation 

within the thesis can be explained by their quite different responses to extreme environmental 

stress conditions. Desmid communities usually shift to a stage with lower diversity when 

there are more stress-tolerant species present. Eventually desmids may completely disappear 

under such circumstances (Coesel, 1982; Mataloni, 1999). The results of the thesis support the 

pattern by showing decreased desmid diversity in more acidic conditions. This contradicts 

diatoms that can successfully cope with the extreme conditions. Diatom species composition 

is typically changed but they still remain in dense populations (Admiraal & Peletier, 1980; 

Peterson & Stevenson, 1992). Such a pattern makes diatoms perfect for biomonitoring of 

habitats even with very distinct environmental conditions (Dixit et al., 1992; Charles et al., 

2006; Blanco et al., 2014), whereas desmids, even though they have a great potential for 

biomonitoring, are found mainly in moderately acidic and oligo-mesotrophic sites (Coesel, 

1982, 2001, 2003). Nevertheless, the thesis showed that the trends of both groups and the 

factors driving algal community structure are very similar, regarding the common conditions 

in which both diatoms and desmids occurred in high densities. The low desmid densities in 

some samples just support the finding that they are affected by environmental parameters in 

addition to spatial factor.  

Despite this work indicated that the factor site showed the most significant effect on 

freshwater algal epiphyton, the studies reporting some noticeable effect of host plant might 

also have a point. The reason is, and it has to be stressed again, that the thesis focused on the 

community structure of epiphyton. The results could be different if other characteristics of 

epiphyton, e.g. biomass, chlorophyll a content, or absolute densities of algae, would be 

investigated. In the research of Laugaste & Reunanen (2005) that was done within a single 

site, chlorophyll a content and biomass were reported to be lower on emergent macrophytes 

and on those with floating leaves, in contrast to submergent macrophytes. Considering more 

appropriate studies that were done at several sites, Lalonde & Downing (1991) found out that 

macrophytes with different architecture supported significantly different biomass of 
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epiphyton, but the effect was not as powerful as the effect of environmental parameters. The 

results of Kuczyńska-Kippen et al. (2005) presented that total algal densities and biomass 

were remarkably higher on Chara than on Typha. These two substrates also differed in 

dominant algal species, but not in terms of species richness. Still the substrate complexity of 

Chara and Typha seem to be relatively similar, thus in Kuczyńska-Kippen et al. (2005) it 

should have been emphasized even more that there were other factors closely related to the 

host plants and these factors eventually affected epiphyton.  

In general, this thesis, focusing on epiphytic community structure, supports the neutral 

substrate hypothesis (Chapter 1.4). Likely, it is not the plant architecture that determines the 

community structure of algal epiphyton, but more indirect influences associated with host 

plant. That is, for instance, the influence of environmental parameters closely related to the 

host plant rather than the influence of substrate itself. Firstly, it might be important where the 

host plant grows, for example where in a water column in terms of depth and distance from a 

shore. Secondly, if there is any occasional movement of the plant in the water column or any 

movement of water masses around the plant surface. Water must then have brought new 

nutrients to the vicinity of host plant and those nutrients are eventually available for 

epiphyton. Thirdly, density of vegetation influences light conditions. The diversity of the 

possible indirect effects of the host plant might have caused the stochastic differences 

between samples. Unfortunately it is extremely hard to detect it within any research. However 

on the whole, it is the spatial effect that drives the epiphytic community. This outcome is 

highly relevant for the use in biomonitoring. Epiphyton can be used for the analysis regardless 

of substrate type, as suggested in Siver (1977) and Cejudo-Figueiras et al. (2010). It does not 

matter from which macrophyte within one site the epiphyton is sampled, but where (i.e. from 

which of the sites) the sample is taken. All the dissimilarities between epiphyton from 

different macrophytes within one site might well be random. 

 

4.4 Future work suggestions 

The presented thesis focused mainly on the community structure of algal epiphyton, 

including species richness and composition. However, it is unclear how the factors (space, 

host plant and environmental parameters) would affect other characteristics of epiphyton (e.g. 

biomass, chlorophyll a content, then phylogenetic, size and shape structure of algal 

epiphyton). Thus, future work should perform similar research, but with an extended reach. It 
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is advised to replicate the methodology used within this study. That means to sample 

epiphyton on several natural plant substrates at several water bodies, and investigate more 

characteristics of epiphytic community at once. The other aspect is to include temporal 

variability of epiphyton, which is not probably so enhanced in terms of changing of benthic 

community structure (Machová-Černá & Neustupa, 2009; Neustupa et al., 2012; Svoboda et 

al., 2014), but could be if biomass measurement is involved (Gons, 1982; Lazarek, 1982; 

Karosienė & Kasperovičienė, 2008; Toporowska et al., 2008).  

Also, it would be worthwhile to investigate the phylogenetic structure, as well as size 

and shape of algal cells in the epiphytic community. These aspects have not yet been studied 

in detail. Firstly, only the proposition has appeared that size structure of epiphyton could be 

used in biomonitoring, in the same way as taxonomic structure (Cattaneo et al., 1995; 

Wunsam et al., 2002). The aspects of algal cell shape and possible associated adaptations are 

not known at all. The study of size and shape of epiphytic cells (as in Neustupa et al., 2009, 

2013), or epiphytic biomass, should also make clear if Ulanowicz´s model (1995) of 

Utricularia, changing associated epiphyton to be more attractive to zooplankton, could be 

found in the nature. Secondly, the contribution of phylogenetic data involved in ecological 

researches leads to the feasible determination of processes that form communities, for 

instance if it is rather environmental filtering or competition between organisms (reviewed in 

Webb et al., 2002; Emerson & Gillespie, 2008; Hardy, 2008). These processes cannot be 

detected just by traditional data including presences and abundances of species in the 

community (Martin, 2002). Thus in addition to epiphyton biomass and chlorophyll a content, 

future work should focus more on these aspects of any microorganismal community, since on 

the whole they have not been sufficiently explored yet.   

Additionally, it could be also interesting to use the artificial models of chosen 

macrophytes (likewise in Siver, 1977; Cattaneo & Kalff, 1979; Burkholder & Wetzel, 1990) 

in order to check again whether there is any influence of plant architecture on associated 

epiphyton, respectively any biological or chemical influence of host plants, as biologically 

active substrates. Further, the succession of benthic community on morphologically different 

microhabitats can be explored. The best way would be to place the artificial plant models at 

several sites, so that it would be decided if the pattern could be generalized. 

By studying epiphyton in running waters (partly in e.g. Winter & Duthie, 2000; 

Soininen & Eloranta, 2004; Veselá & Johansen, 2009), it should be revealed whether the 

factor of current velocity (Peterson & Stevenson, 1992; Ghosh & Gaur, 1998; Battin et al., 
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2003) is also crucial for the epiphytic community. Higher current velocity is expected to lead 

to the presence of more adapted species for living in an environment with such perturbation. 

For example there may be more species that are firmly attached to the surface by mucilage 

stalks. 

Other research opportunities are promising too. The information about heterotrophic 

protists in freshwater epiphyton (so far partly in Carrias et al., 1998; Mitchell et al., 2003; 

Mieczan, 2007; Mieczan & Adamczuk, 2015), as well as the information about the whole 

epiphytic microbial biofilm (Sekar et al., 2002; Ács et al., 2003; Barranguet et al., 2004; 

Domozych & Domozych, 2008) are still very fragmentary. In particular, it would be 

interesting to investigate the succession of epiphyton in the relationship to bacteria which are 

known to be the first organisms that colonise the substrate, thus providing the base for the 

creation of epiphytic layer (Bruckner et al., 2008), or in the relationship to the production of 

diatom mucilage as a type of secondary substrate (Hoagland et al., 1982; Tuji, 2000). 

Such huge projects are surely challenging, unless many researchers were involved at 

the same time. However, the main recommendation coming out of this thesis is more 

straightforward. Any even less ambitious projects concerning epiphyton should take account 

of spatial factor (sites) together with the factor of host plant, and should not perform the study 

within a single water body. If the spatial factor is not incorporated in a study, the results could 

be site specific and subsequently cannot be generalized. 
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5. Conclusion 

This Master´s thesis explored freshwater algal epiphyton on several types on natural 

plant substrates at several sites. Therefore, variation in epiphyton among and within water 

bodies, as well among and within host plant types could have been investigated in details. By 

applying such an approach, the thesis provides considerable and accurate insight into ecology 

of freshwater microphytobenthos.  

On the whole, the neutral substrate hypothesis is highly favoured by the outcomes of 

this thesis, leading to the conclusion that epiphyton can be used in biomonitoring regardless of 

substrate type (host plant). The results have demonstrated the overwhelming effect of site 

factor and mild, but still noticeable, effect of environmental parameters (pH and conductivity) 

on community structure of freshwater algal epiphyton. The influence of the host plant and its 

architecture appears to be negligible. The occasional differences between epiphyton 

associated with different macrophytes within one site are believed to be random, or caused by 

the influence of environmental conditions that are in the immediate vicinity of individual host 

plant. But it is more probable that these distinct environmental conditions are determined by 

the environment itself or by host plant indirectly. In terms of substrate preferences, there was 

no substantial evidence of substrate specificity of any particular algal taxon. Thus, every 

individual macrophyte is considered to be truly independent. The majority of algal species 

that showed positive correlations with some of the host plants are often reported to be present 

in higher abundances in other types of microhabitats. Only a few algal species (Encyonopsis 

cf. delicatissima, Eunotia implicata and Pinnularia pseudogibba), out of more than 200 

identified species, are perhaps substrate specialists, however it should be validated.  

These results are in good agreement with already published studies that similarly 

investigated the effects of several factors on epiphyton at once. The value of the research 

relied on the comparison between epiphytic diatom and desmid communities. The results have 

indicated that the patterns of both algal groups were virtually the same and are potentially 

generalized for the entire microphytobentic community. 

Finally, it is strongly recommended to include spatial distance as a factor (i.e. to 

investigate more than one site) in future works concerning epiphytic community. Only by this 

methodology, it is possible to determine whether discovered patterns can be generalized. 

Otherwise the obtained data could be site specific and may lead to overestimation of 

macrophyte influence on the associated epiphyton.  
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Appendix 1 Overview of sampling sites with additional information. (ᵃ) The sites that were not included to the 

analysis of desmid communities due to low number of desmids cells found in the samples. 

 

site abbr. GPS N (°) GPS E (°) trophic state 

Swamp 1 S1 50.57584 14.670978 oligotrophic 

Swamp 2 S2 50.575783 14.670375 oligotrophic 

Swamp 3 S3 50.5789 14.667397 oligotrophic 

tůň u Klůčku TK 50.577356 14.661661 oligo-mesotrophic 

Kozohlůdky KO 49.216361 14.648664 oligotrophic 

Borkovická blata BB 49.235583 14.623514 oligotrophic 

pískovny Cep 1 C1 48.917978 14.883856 oligotrophic 

pískovny Cep 2 C2 48.917083 14.882594 oligotrophic 

pískovny Cep 3 C3 48.923533 14.839153 oligotrophic 

Rybníčky u Podbořánek 1 P1 50.043147 13.440767 mesotrophic 

Rybníčky u Podbořánek 2 P2 50.044681 13.436136 mesotrophic 

Horní Kracle HK 50.140422 13.843089 mesotrophic 

Ďáblík 1 D1 48.828142 14.597161 mesotrophic 

Ďáblík 2 ᵃ D2 48.828183 14.596436 mesotrophic 

Rybníček u Studeného ᵃ RS 49.601056 15.127856 mesotrophic 

 

 

  site PRE-STUDY MAIN STUDY  

  sampling date no. of samples sampling date no. of samples 

Swamp 1 15.10.2011 6 28.8.2012 6 

Swamp 2 - - 28.8.2012 6 

Swamp 3 15.10.2011 3 28.8.2012 9 

tůň u Klůčku 15.10.2011 3 28.8.2012 12 

Kozohlůdky 30.9.2011 6 10.9.2012 9 

Borkovická blata - - 10.9.2012 6 

pískovny Cep 1 - - 8.9.2012 9 

pískovny Cep 2 - - 8.9.2012 5 

pískovny Cep 3 - - 8.9.2012 9 

Rybníčky u Podbořánek 1 1.10.2011 12 27.8.2012 18 

Rybníčky u Podbořánek 2 - - 27.8.2012 12 

Horní Kracle - - 5.9.2012 9 

Ďáblík 1 - - 8.9.2012 18 

Ďáblík 2 ᵃ - - 8.9.2012 7 

Rybníček u Studeného ᵃ 17.10.2011 6 - - 

 

 



 

 

Appendix 2 Overview of all samples with sampling dates and related factors. The last two columns show in 

which samples 200 cells of particular algal group were found. Those samples could be included in the analyses 

and thus created the complete datasets. The numbers in brackets reflect recorded species richness.  

no. sample date site host pH conductivity 200 diatoms 200 desmids 

  code          [μS/cm] (spp.) (spp.) 

1 1-S1-UT1 15.10.2011 S1 UT 4.4 81 yes (17) yes (12) 

2 1-S1-UT2 15.10.2011 S1 UT 5.1 91 yes (8) yes (9) 

3 1-S1-UT3 15.10.2011 S1 UT 5.0 79 yes (14) yes (14) 

4 1-S1-SP1 15.10.2011 S1 SP 4.4 81 yes (16) yes (8) 

5 1-S1-SP2 15.10.2011 S1 SP 5.1 91 yes (8) yes (7) 

6 1-S1-SP3 15.10.2011 S1 SP 5.0 79 yes (15) yes (16) 

7 1-S3-SP1 15.10.2011 S3 SP 4.1 104 yes (7) yes (4) 

8 1-S3-SP2 15.10.2011 S3 SP 4.1 102 yes (7) yes (4) 

9 1-S3-SP3 15.10.2011 S3 SP 4.2 97 yes (6) yes (4) 

10 1-TK-SP1 15.10.2011 TK SP 4.7 168 yes (7) yes (4) 

11 1-TK-SP2 15.10.2011 TK SP 5.4 254 yes (10) yes (18) 

12 1-TK-SP3 15.10.2011 TK SP 4.6 157 yes (9) yes (15) 

13 1-KO-EQ1 30.9.2011 KO EQ 4.5 33 yes (9) not found 

14 1-KO-EQ2 30.9.2011 KO EQ 4.5 33 yes (12) not found 

15 1-KO-EQ3 30.9.2011 KO EQ 4.5 33 yes (5) not found 

16 1-KO-UT1 30.9.2011 KO UT 4.5 33 yes (8) yes (11) 

17 1-KO-UT2 30.9.2011 KO UT 4.5 33 yes (6) yes (11) 

18 1-KO-UT3 30.9.2011 KO UT 4.5 33 yes (8) not found 

19 1-P1-SP1 1.10.2011 P1 SP 3.6 142 yes (19) yes (8) 

20 1-P1-SP2 1.10.2011 P1 SP 3.6 161 yes (21) yes (10) 

21 1-P1-SP3 1.10.2011 P1 SP 3.6 200 yes (24) not found 

22 1-P1-UT1 1.10.2011 P1 UT 7.1 250 yes (23) yes (14) 

23 1-P1-UT2 1.10.2011 P1 UT 6.7 237 yes (30) yes (14) 

24 1-P1-UT3 1.10.2011 P1 UT 6.7 237 yes (33) yes (17) 

25 1-P1-NY1 1.10.2011 P1 NY 9.5 249 yes (19) yes (8) 

26 1-P1-NY2 1.10.2011 P1 NY 9.0 248 yes (12) yes (7) 

27 1-P1-NY3 1.10.2011 P1 NY 7.0 244 yes (12) not found 

28 1-P1-CA1 1.10.2011 P1 CA 7.1 250 yes (21) not found 

29 1-P1-CA2 1.10.2011 P1 CA 7.1 250 yes (30) yes (16) 

30 1-P1-CA3 1.10.2011 P1 CA 6.7 237 yes (18) yes (17) 

31 1-RS-CA1 17.10.2011 RS CA 6.5 173 yes (19) not found 

32 1-RS-CA2 17.10.2011 RS CA 6.5 171 yes (23) not found 

33 1-RS-CA3 17.10.2011 RS CA 6.6 166 yes (20) not found 

34 1-RS-TY1 17.10.2011 RS TY 6.5 173 yes (18) not found 

35 1-RS-TY2 17.10.2011 RS TY 6.5 171 yes (13) not found 

36 1-RS-TY3 17.10.2011 RS TY 6.6 166 yes (16) not found 

37 2-P1-SP1 27.8.2012 P1 SP 3.9 220 yes (14) yes (11) 

38 2-P1-SP2 27.8.2012 P1 SP 4.2 104 yes (25) yes (12) 

39 2-P1-SP3 27.8.2012 P1 SP 4.8 158 yes (31) yes (12) 



 

 

no. sample date site host pH conductivity 200 diatoms 200 desmids 

  code          [μS/cm] (spp.) (spp.) 

40 2-P1-UT1 27.8.2012 P1 UT 6.5 249 yes (19) yes (11) 

41 2-P1-UT2 27.8.2012 P1 UT 6.5 255 yes (17) yes (12) 

42 2-P1-UT3 27.8.2012 P1 UT 6.5 273 yes (21) yes (14) 

43 2-P1-CH1 27.8.2012 P1 CH 6.5 249 yes (9) yes (14) 

44 2-P1-CH2 27.8.2012 P1 CH 6.5 255 yes (15) yes (15) 

45 2-P1-CH3 27.8.2012 P1 CH 6.5 273 yes (20) yes (14) 

46 2-P1-NY1 27.8.2012 P1 NY 6.4 240 yes (19) yes (11) 

47 2-P1-NY2 27.8.2012 P1 NY 6.3 240 yes (18) yes (12) 

48 2-P1-NY3 27.8.2012 P1 NY 6.2 240 yes (13) yes (17) 

49 2-P1-PO1 27.8.2012 P1 PO 6.4 240 yes (14) yes (11) 

50 2-P1-PO2 27.8.2012 P1 PO 6.3 240 yes (18) yes (9) 

51 2-P1-PO3 27.8.2012 P1 PO 6.2 240 yes (18) yes (10) 

52 2-P1-CA1 27.8.2012 P1 CA 6.5 249 yes (26) yes (12) 

53 2-P1-CA2 27.8.2012 P1 CA 6.5 255 yes (29) not found 

54 2-P1-CA3 27.8.2012 P1 CA 6.5 273 yes (26) yes (18) 

55 2-P2-UT1 27.8.2012 P2 UT 6.7 260 yes (14) yes (18) 

56 2-P2-UT2 27.8.2012 P2 UT 6.7 260 yes (18) yes (21) 

57 2-P2-UT3 27.8.2012 P2 UT 6.7 260 yes (17) yes (15) 

58 2-P2-CA1 27.8.2012 P2 CA 6.7 260 yes (19) yes (17) 

59 2-P2-CA2 27.8.2012 P2 CA 6.7 260 yes (19) yes (20) 

60 2-P2-CA3 27.8.2012 P2 CA 6.7 260 yes (16) yes (19) 

61 2-P2-PO1 27.8.2012 P2 PO 6.5 270 yes (16) yes (13) 

62 2-P2-PO2 27.8.2012 P2 PO 6.5 270 yes (12) yes (12) 

63 2-P2-PO3 27.8.2012 P2 PO 6.5 270 yes (17) yes (8) 

64 2-P2-CH1 27.8.2012 P2 CH 6.7 260 yes (22) yes (18) 

65 2-P2-CH2 27.8.2012 P2 CH 6.7 260 yes (16) yes (16) 

66 2-P2-CH3 27.8.2012 P2 CH 6.7 260 yes (11) yes (15) 

67 2-S1-SP1 28.8.2012 S1 SP 6.1 70 yes (11) yes (17) 

68 2-S1-SP2 28.8.2012 S1 SP 5.5 79 yes (14) yes (8) 

69 2-S1-SP3 28.8.2012 S1 SP 4.9 98 yes (16) yes (22) 

70 2-S1-UT1 28.8.2012 S1 UT 6.1 70 yes (17) yes (15) 

71 2-S1-UT2 28.8.2012 S1 UT 5.5 79 yes (17) yes (16) 

72 2-S1-UT3 28.8.2012 S1 UT 4.9 98 yes (14) yes (19) 

73 2-S2-SP1 28.8.2012 S2 SP 5.0 46 yes (10) yes (18) 

74 2-S2-SP2 28.8.2012 S2 SP 5.4 54 yes (12) yes (21) 

75 2-S2-SP3 28.8.2012 S2 SP 5.7 55 yes (9) yes (16) 

76 2-S2-UT1 28.8.2012 S2 UT 5.0 46 yes (10) yes (20) 

77 2-S2-UT2 28.8.2012 S2 UT 5.4 54 yes (15) yes (25) 

78 2-S2-UT3 28.8.2012 S2 UT 5.7 55 yes (14) yes (18) 

79 2-S3-SP1 28.8.2012 S3 SP 4.7 89 yes (7) yes (8) 

80 2-S3-SP2 28.8.2012 S3 SP 4.8 89 yes (8) yes (9) 

81 2-S3-SP3 28.8.2012 S3 SP 4.5 90 yes (9) yes (6) 

82 2-S3-UT1 28.8.2012 S3 UT 4.7 89 yes (10) yes (7) 



 

 

no. sample date site host pH conductivity 200 diatoms 200 desmids 

  code          [μS/cm] (spp.) (spp.) 

83 2-S3-UT2 28.8.2012 S3 UT 4.8 89 yes (9) yes (5) 

85 2-S3-NY1 28.8.2012 S3 NY 4.7 89 yes (16) yes (6) 

86 2-S3-NY2 28.8.2012 S3 NY 4.8 89 yes (21) yes (7) 

87 2-S3-NY3 28.8.2012 S3 NY 4.5 90 yes (14) yes (6) 

88 2-TK-SP1 28.8.2012 TK SP 6.2 192 yes (3) yes (8) 

89 2-TK-SP2 28.8.2012 TK SP 6.4 192 yes (13) yes (17) 

90 2-TK-SP3 28.8.2012 TK SP 6.0 195 yes (2) yes (10) 

91 2-TK-UT1 28.8.2012 TK UT 6.2 192 yes (13) yes (24) 

92 2-TK-UT2 28.8.2012 TK UT 6.4 192 not found yes (22) 

93 2-TK-UT3 28.8.2012 TK UT 6.0 195 yes (13) yes (18) 

94 2-TK-PO1 28.8.2012 TK PO 6.2 192 yes (11) yes (23) 

95 2-TK-PO2 28.8.2012 TK PO 6.4 192 yes (12) yes (24) 

96 2-TK-PO3 28.8.2012 TK PO 6.0 195 yes (13) yes (19) 

97 2-TK-NY1 28.8.2012 TK NY 6.2 192 yes (13) yes (25) 

98 2-TK-NY2 28.8.2012 TK NY 6.4 192 yes (19) yes (22) 

99 2-TK-NY3 28.8.2012 TK NY 6.0 195 yes (15) yes (21) 

100 2-D1-SP1 8.9.2012 D1 SP 5.6 70 yes (21) yes (24) 

101 2-D1-SP2 8.9.2012 D1 SP 5.6 70 yes (25) yes (16) 

102 2-D1-SP3 8.9.2012 D1 SP 6.4 72 yes (36) not found 

103 2-D1-UT1 8.9.2012 D1 UT 6.5 79 yes (32) yes (19) 

104 2-D1-UT2 8.9.2012 D1 UT 6.2 77 yes (17) yes (17) 

105 2-D1-UT3 8.9.2012 D1 UT 6.5 73 yes (25) yes (19) 

106 2-D1-CH1 8.9.2012 D1 CH 6.5 79 yes (32) yes (18) 

107 2-D1-CH2 8.9.2012 D1 CH 6.2 77 yes (17) yes (15) 

108 2-D1-CH3 8.9.2012 D1 CH 6.5 73 yes (29) yes (21) 

109 2-D1-PO1 8.9.2012 D1 PO 6.1 77 yes (19) yes (16) 

110 2-D1-PO2 8.9.2012 D1 PO 6.0 72 yes (16) yes (16) 

111 2-D1-PO3 8.9.2012 D1 PO 5.9 73 yes (15) yes (15) 

112 2-D1-TY1 8.9.2012 D1 TY 6.1 77 yes (27) yes (17) 

113 2-D1-TY2 8.9.2012 D1 TY 6.0 72 yes (14) yes (21) 

114 2-D1-TY3 8.9.2012 D1 TY 5.9 73 yes (21) yes (18) 

115 2-D1-CA1 8.9.2012 D1 CA 6.5 79 yes (33) not found 

116 2-D1-CA2 8.9.2012 D1 CA 6.2 77 yes (17) yes (13) 

117 2-D1-CA3 8.9.2012 D1 CA 6.5 73 yes (30) not found 

118 2-D2-CA1 8.9.2012 D2 CA 6.2 106 yes (26) not found 

119 2-D2-CA2 8.9.2012 D2 CA 6.2 81 yes (30) not found 

120 2-D2-CA3 8.9.2012 D2 CA 6.2 86 yes (35) not found 

121 2-D2-UT1 8.9.2012 D2 UT 6.2 106 yes (20) not found 

122 2-D2-UT2 8.9.2012 D2 UT 6.2 81 yes (34) not found 

123 2-D2-UT3 8.9.2012 D2 UT 6.2 86 yes (27) not found 

124 2-D2-CH1 8.9.2012 D2 CH 6.2 81 yes (23) not found 

125 2-HK-UT1 5.9.2012 HK UT 7.0 230 yes (19) yes (14) 

126 2-HK-UT2 5.9.2012 HK UT 7.0 228 yes (13) yes (15) 



 

 

no. sample date site host pH conductivity 200 diatoms 200 desmids 

  code          [μS/cm] (spp.) (spp.) 

127 2-HK-UT3 5.9.2012 HK UT 7.0 228 yes (18) yes (13) 

129 2-HK-EQ2 5.9.2012 HK EQ 7.0 228 yes (16) yes (10) 

130 2-HK-EQ3 5.9.2012 HK EQ 7.0 228 yes (20) yes (12) 

131 2-HK-NY1 5.9.2012 HK NY 7.0 230 yes (21) not found 

132 2-HK-NY2 5.9.2012 HK NY 7.0 230 yes (19) not found 

133 2-HK-NY3 5.9.2012 HK NY 7.0 228 yes (22) yes (13) 

134 2-KO-UT1 10.9.2012 KO UT 4.3 42 yes (11) yes (13) 

135 2-KO-UT2 10.9.2012 KO UT 4.3 41 yes (10) yes (10) 

136 2-KO-UT3 10.9.2012 KO UT 4.4 38 yes (3) not found 

137 2-KO-EQ1 10.9.2012 KO EQ 4.3 42 yes (13) yes (6) 

138 2-KO-EQ2 10.9.2012 KO EQ 4.3 41 yes (12) yes (7) 

139 2-KO-EQ3 10.9.2012 KO EQ 4.4 38 yes (10) not found 

140 2-KO-SP1 10.9.2012 KO SP 3.8 51 yes (22) yes (15) 

141 2-KO-SP2 10.9.2012 KO SP 4.3 41 yes (7) yes (8) 

142 2-KO-SP3 10.9.2012 KO SP 4.4 38 yes (5) yes (6) 

143 2-BB-SP1 10.9.2012 BB SP 6.3 96 yes (21) yes (16) 

144 2-BB-SP2 10.9.2012 BB SP 6.3 90 yes (17) not found 

145 2-BB-SP3 10.9.2012 BB SP 6.4 90 yes (17) yes (10) 

146 2-BB-PO1 10.9.2012 BB PO 6.3 96 yes (17) yes (11) 

147 2-BB-PO2 10.9.2012 BB PO 6.4 88 yes (19) yes (9) 

148 2-BB-PO3 10.9.2012 BB PO 6.2 88 yes (15) yes (10) 

149 2-C1-UT1 8.9.2012 C1 UT 6.8 250 yes (7) yes (16) 

150 2-C1-UT2 8.9.2012 C1 UT 6.8 250 yes (12) yes (18) 

151 2-C1-UT3 8.9.2012 C1 UT 6.8 250 yes (16) yes (15) 

152 2-C1-PO1 8.9.2012 C1 PO 6.8 250 yes (7) yes (17) 

153 2-C1-PO2 8.9.2012 C1 PO 6.8 250 yes (13) yes (18) 

154 2-C1-PO3 8.9.2012 C1 PO 6.8 250 yes (13) yes (23) 

155 2-C1-TY1 8.9.2012 C1 TY 6.8 250 yes (15) yes (15) 

156 2-C1-TY2 8.9.2012 C1 TY 6.8 250 yes (21) yes (16) 

157 2-C1-TY3 8.9.2012 C1 TY 6.8 250 yes (13) yes (18) 

158 2-C2-TY1 8.9.2012 C2 TY 6.5 26 yes (17) yes (17) 

159 2-C2-TY2 8.9.2012 C2 TY 6.6 26 yes (12) yes (18) 

160 2-C2-TY3 8.9.2012 C2 TY 6.5 26 yes (14) yes (20) 

161 2-C2-NY1 8.9.2012 C2 NY 6.5 26 yes (16) yes (28) 

162 2-C2-NY2 8.9.2012 C2 NY 6.6 26 yes (17) yes (27) 

163 2-C3-SP1 8.9.2012 C3 SP 5.5 21 yes (4) yes (5) 

164 2-C3-SP2 8.9.2012 C3 SP 5.2 22 yes (9) yes (19) 

165 2-C3-SP3 8.9.2012 C3 SP 5.5 21 yes (15) yes (16) 

166 2-C3-NY1 8.9.2012 C3 NY 5.5 21 yes (13) yes (16) 

167 2-C3-NY2 8.9.2012 C3 NY 5.5 21 yes (7) yes (19) 

168 2-C3-NY3 8.9.2012 C3 NY 5.5 21 yes (14) yes (19) 

169 2-C3-PO1 8.9.2012 C3 PO 5.5 21 yes (9) yes (17) 

170 

171 

2-C3-PO2 

2-C3-PO3 

8.9.2012 

8.9.2012 

C3 

C3 

PO 

PO 

5.2 

5.2 

22 

22 

yes (13) 

yes (11) 

yes (9) 

yes (17) 



 

 

Appendix 3 Overview of datasets. The numbers in brackets refer to the number of sample in each dataset. The 

complete datasets contain the applicable samples where 200 cells of particular algal group were found (see 

Appendix 2) and were pruned to the reduced datasets which provide the maximum possible overlap of host 

plants. The datasets for the Procrustes statistic contain only the samples in which both 200 diatom cells and 200 

desmid cells were found. 

no. sample COMPLETE DATASETS REDUCED DATASETS 

 

code diatoms desmids Procrustes diatoms desmids Procrustes 

    (170) (141) (140) (50) (50) (49) 

1 1-S1-UT1 yes yes yes excluded excluded excluded 

2 1-S1-UT2 yes yes yes excluded excluded excluded 

3 1-S1-UT3 yes yes yes excluded excluded excluded 

4 1-S1-SP1 yes yes yes excluded excluded excluded 

5 1-S1-SP2 yes yes yes excluded excluded excluded 

6 1-S1-SP3 yes yes yes excluded excluded excluded 

7 1-S3-SP1 yes yes yes excluded excluded excluded 

8 1-S3-SP2 yes yes yes excluded excluded excluded 

9 1-S3-SP3 yes yes yes excluded excluded excluded 

10 1-TK-SP1 yes yes yes excluded excluded excluded 

11 1-TK-SP2 yes yes yes excluded excluded excluded 

12 1-TK-SP3 yes yes yes excluded excluded excluded 

13 1-KO-EQ1 yes excluded excluded excluded excluded excluded 

14 1-KO-EQ2 yes excluded excluded excluded excluded excluded 

15 1-KO-EQ3 yes excluded excluded excluded excluded excluded 

16 1-KO-UT1 yes yes yes excluded excluded excluded 

17 1-KO-UT2 yes yes yes excluded excluded excluded 

18 1-KO-UT3 yes excluded excluded excluded excluded excluded 

19 1-P1-SP1 yes yes yes excluded excluded excluded 

20 1-P1-SP2 yes yes yes excluded excluded excluded 

21 1-P1-SP3 yes excluded excluded excluded excluded excluded 

22 1-P1-UT1 yes yes yes excluded excluded excluded 

23 1-P1-UT2 yes yes yes excluded excluded excluded 

24 1-P1-UT3 yes yes yes excluded excluded excluded 

25 1-P1-NY1 yes yes yes excluded excluded excluded 

26 1-P1-NY2 yes yes yes excluded excluded excluded 

27 1-P1-NY3 yes excluded excluded excluded excluded excluded 

28 1-P1-CA1 yes excluded excluded excluded excluded excluded 

29 1-P1-CA2 yes yes yes excluded excluded excluded 

30 1-P1-CA3 yes yes yes excluded excluded excluded 

31 1-RS-CA1 yes excluded excluded excluded excluded excluded 

32 1-RS-CA2 yes excluded excluded excluded excluded excluded 

33 1-RS-CA3 yes excluded excluded excluded excluded excluded 

34 1-RS-TY1 yes excluded excluded excluded excluded excluded 

35 1-RS-TY2 yes excluded excluded excluded excluded excluded 

36 1-RS-TY3 yes excluded excluded excluded excluded excluded 

37 2-P1-SP1 yes yes yes yes yes yes 



 

 

 no. sample COMPLETE DATASETS REDUCED DATASETS 

 

code diatoms desmids Procrustes diatoms desmids Procrustes 

    (170) (141) (140) (50) (50) (49) 

38 2-P1-SP2 yes yes yes yes yes yes 

39 2-P1-SP3 yes yes yes yes yes yes 

40 2-P1-UT1 yes yes yes yes yes yes 

41 2-P1-UT2 yes yes yes yes yes yes 

42 2-P1-UT3 yes yes yes yes yes yes 

43 2-P1-CH1 yes yes yes excluded excluded excluded 

44 2-P1-CH2 yes yes yes excluded excluded excluded 

45 2-P1-CH3 yes yes yes excluded excluded excluded 

46 2-P1-NY1 yes yes yes yes yes yes 

47 2-P1-NY2 yes yes yes yes yes yes 

48 2-P1-NY3 yes yes yes yes yes yes 

49 2-P1-PO1 yes yes yes yes yes yes 

50 2-P1-PO2 yes yes yes yes yes yes 

51 2-P1-PO3 yes yes yes yes yes yes 

52 2-P1-CA1 yes yes yes excluded excluded excluded 

53 2-P1-CA2 yes excluded excluded excluded excluded excluded 

54 2-P1-CA3 yes yes yes excluded excluded excluded 

55 2-P2-UT1 yes yes yes excluded excluded excluded 

56 2-P2-UT2 yes yes yes excluded excluded excluded 

57 2-P2-UT3 yes yes yes excluded excluded excluded 

58 2-P2-CA1 yes yes yes excluded excluded excluded 

59 2-P2-CA2 yes yes yes excluded excluded excluded 

60 2-P2-CA3 yes yes yes excluded excluded excluded 

61 2-P2-PO1 yes yes yes excluded excluded excluded 

62 2-P2-PO2 yes yes yes excluded excluded excluded 

63 2-P2-PO3 yes yes yes excluded excluded excluded 

64 2-P2-CH1 yes yes yes excluded excluded excluded 

65 2-P2-CH2 yes yes yes excluded excluded excluded 

66 2-P2-CH3 yes yes yes excluded excluded excluded 

67 2-S1-SP1 yes yes yes excluded excluded excluded 

68 2-S1-SP2 yes yes yes excluded excluded excluded 

69 2-S1-SP3 yes yes yes excluded excluded excluded 

70 2-S1-UT1 yes yes yes excluded excluded excluded 

71 2-S1-UT2 yes yes yes excluded excluded excluded 

72 2-S1-UT3 yes yes yes excluded excluded excluded 

73 2-S2-SP1 yes yes yes excluded excluded excluded 

74 2-S2-SP2 yes yes yes excluded excluded excluded 

75 2-S2-SP3 yes yes yes excluded excluded excluded 

76 2-S2-UT1 yes yes yes excluded excluded excluded 

77 2-S2-UT2 yes yes yes excluded excluded excluded 

78 2-S2-UT3 yes yes yes excluded excluded excluded 

79 2-S3-SP1 yes yes yes yes yes yes 

80 2-S3-SP2 yes yes yes yes yes yes 



 

 

no. sample COMPLETE DATASETS REDUCED DATASETS 

 

code diatoms desmids Procrustes diatoms desmids Procrustes 

    (170) (141) (140) (50) (50) (49) 

81 2-S3-SP3 yes yes yes yes yes yes 

82 2-S3-UT1 yes yes yes yes yes yes 

83 2-S3-UT2 yes yes yes yes yes yes 

84 2-S3-UT3 yes yes yes yes yes yes 

85 2-S3-NY1 yes yes yes yes yes yes 

86 2-S3-NY2 yes yes yes yes yes yes 

87 2-S3-NY3 yes yes yes yes yes yes 

88 2-TK-SP1 yes yes yes yes yes yes 

89 2-TK-SP2 yes yes yes yes yes yes 

90 2-TK-SP3 yes yes yes yes yes yes 

91 2-TK-UT1 yes yes yes yes yes yes 

92 2-TK-UT2 excluded yes excluded excluded yes excluded 

93 2-TK-UT3 yes yes yes yes yes yes 

94 2-TK-PO1 yes yes yes yes yes yes 

95 2-TK-PO2 yes yes yes yes yes yes 

96 2-TK-PO3 yes yes yes yes yes yes 

97 2-TK-NY1 yes yes yes yes yes yes 

98 2-TK-NY2 yes yes yes yes yes yes 

99 2-TK-NY3 yes yes yes yes yes yes 

100 2-D1-SP1 yes yes yes yes yes yes 

101 2-D1-SP2 yes yes yes yes yes yes 

102 2-D1-SP3 yes excluded excluded yes excluded excluded 

103 2-D1-UT1 yes yes yes yes yes yes 

104 2-D1-UT2 yes yes yes yes yes yes 

105 2-D1-UT3 yes yes yes yes yes yes 

106 2-D1-CH1 yes yes yes excluded excluded excluded 

107 2-D1-CH2 yes yes yes excluded excluded excluded 

108 2-D1-CH3 yes yes yes excluded excluded excluded 

109 2-D1-PO1 yes yes yes yes yes yes 

110 2-D1-PO2 yes yes yes yes yes yes 

111 2-D1-PO3 yes yes yes yes yes yes 

112 2-D1-TY1 yes yes yes excluded excluded excluded 

113 2-D1-TY2 yes yes yes excluded excluded excluded 

114 2-D1-TY3 yes yes yes excluded excluded excluded 

115 2-D1-CA1 yes excluded excluded excluded excluded excluded 

116 2-D1-CA2 yes yes yes excluded excluded excluded 

117 2-D1-CA3 yes excluded excluded excluded excluded excluded 

118 2-D2-CA1 yes excluded excluded excluded excluded excluded 

119 2-D2-CA2 yes excluded excluded excluded excluded excluded 

120 2-D2-CA3 yes excluded excluded excluded excluded excluded 

121 2-D2-UT1 yes excluded excluded excluded excluded excluded 

122 2-D2-UT2 yes excluded excluded excluded excluded excluded 

 



 

 

no. sample COMPLETE DATASETS REDUCED DATASETS 

 

code diatoms desmids Procrustes diatoms desmids Procrustes 

    (170) (141) (140) (50) (50) (49) 

123 2-D2-UT3 yes excluded excluded excluded excluded excluded 

124 2-D2-CH1 yes excluded excluded excluded excluded excluded 

125 2-HK-UT1 yes yes yes excluded excluded excluded 

126 2-HK-UT2 yes yes yes excluded excluded excluded 

127 2-HK-UT3 yes yes yes excluded excluded excluded 

128 2-HK-EQ1 yes excluded excluded excluded excluded excluded 

129 2-HK-EQ2 yes yes yes excluded excluded excluded 

130 2-HK-EQ3 yes yes yes excluded excluded excluded 

131 2-HK-NY1 yes excluded excluded excluded excluded excluded 

132 2-HK-NY2 yes excluded excluded excluded excluded excluded 

133 2-HK-NY3 yes yes yes excluded excluded excluded 

134 2-KO-UT1 yes yes yes excluded excluded excluded 

135 2-KO-UT2 yes yes yes excluded excluded excluded 

136 2-KO-UT3 yes excluded excluded excluded excluded excluded 

137 2-KO-EQ1 yes yes yes excluded excluded excluded 

138 2-KO-EQ2 yes yes yes excluded excluded excluded 

139 2-KO-EQ3 yes excluded excluded excluded excluded excluded 

140 2-KO-SP1 yes yes yes excluded excluded excluded 

141 2-KO-SP2 yes yes yes excluded excluded excluded 

142 2-KO-SP3 yes yes yes excluded excluded excluded 

143 2-BB-SP1 yes yes yes excluded excluded excluded 

144 2-BB-SP2 yes excluded excluded excluded excluded excluded 

145 2-BB-SP3 yes yes yes excluded excluded excluded 

146 2-BB-PO1 yes yes yes excluded excluded excluded 

147 2-BB-PO2 yes yes yes excluded excluded excluded 

148 2-BB-PO3 yes yes yes excluded excluded excluded 

149 2-C1-UT1 yes yes yes excluded excluded excluded 

150 2-C1-UT2 yes yes yes excluded excluded excluded 

151 2-C1-UT3 yes yes yes excluded excluded excluded 

152 2-C1-PO1 yes yes yes excluded excluded excluded 

153 2-C1-PO2 yes yes yes excluded excluded excluded 

154 2-C1-PO3 yes yes yes excluded excluded excluded 

155 2-C1-TY1 yes yes yes excluded excluded excluded 

156 2-C1-TY2 yes yes yes excluded excluded excluded 

157 2-C1-TY3 yes yes yes excluded excluded excluded 

158 2-C2-TY1 yes yes yes excluded excluded excluded 

159 2-C2-TY2 yes yes yes excluded excluded excluded 

160 2-C2-TY3 yes yes yes excluded excluded excluded 

161 2-C2-NY1 yes yes yes excluded excluded excluded 

162 2-C2-NY2 yes yes yes excluded excluded excluded 

163 2-C3-SP1 yes yes yes yes yes yes 

164 2-C3-SP2 yes yes yes yes yes yes 

165 2-C3-SP3 yes yes yes yes yes yes 



 

 

no. sample COMPLETE DATASETS REDUCED DATASETS 

 

code diatoms desmids Procrustes diatoms desmids Procrustes 

    (170) (141) (140) (50) (50) (49) 

166 2-C3-NY1 yes yes yes yes yes yes 

167 2-C3-NY2 yes yes yes yes yes yes 

168 2-C3-NY3 yes yes yes yes yes yes 

169 2-C3-PO1 yes yes yes yes yes yes 

170 2-C3-PO2 yes yes yes yes yes yes 

171 2-C3-PO3 yes yes yes yes yes yes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix 4 Diatom species list from the complete dataset, i.e. 170 applicable samples. In total, there were 171 

species identified. 

 

Achnanthes cf. stolida 

 
Eunotia meisteri 

Achnanthes cf. tuma 

 
Eunotia minor 

Achnanthes sp. (morphotyp 1) 

 
Eunotia mucophila 

Achnanthes sp. (morphotyp 2) 

 
Eunotia muscicola 

Achnanthidium pyrenaicum 

 
Eunotia naegelii 

Achnanthidium minutissimum 

 
Eunotia nymanniana 

Achnanthidium subatomoides 

 
Eunotia paludosa 

Amphora ovalis 

 
Eunotia paludosa s.l. 

Brachysira brebissonii 

 
Eunotia pectinalis var. ventricosa 

Brachysira neoexilis (morphotyp 1) 

 
Eunotia rhomboidea 

Brachysira neoexilis (morphotyp 2) 

 
Eunotia tenella 

Brachysira procera 

 
Eunotia trinacria 

Brachysira serians 

 
Fallacia vitrea 

Caloneis tenuis 

 
Fragilaria acus 

Cocconeis placentula var. lineata 

 
Fragilaria brevistriata 

Cocconeis placentula var. placentula 

 
Fragilaria capucina 

Cymbella aspera 

 
Fragilaria construens 

Cymbella cf. lange-bertalotii 

 
Fragilaria crotonensis 

Cymbella cymbiformis 

 
Fragilaria nanana 

Cymbopleura naviculiformis 

 
Fragilaria nitzschioides 

Denticula kuetzingii 

 
Fragilariforma bicapitata 

Encyonema elginense 

 
Fragilariforma virescens 

Encyonema gracile 

 
Frustulia crassinervia 

Encyonema minutum 

 
Frustulia saxonica 

Encyonema silesiacum 

 
Gomphonema acuminatum 

Encyonopsis cf. delicatissima 

 
Gomphonema acuminatum var. brebissonii 

Encyonopsis falaisensis 

 
Gomphonema anjae 

Epithemia adnata 

 
Gomphonema augur 

Eunotia ambivalens 

 
Gomphonema cf. clavatum 

Eunotia arculus 

 
Gomphonema gracile 

Eunotia bilunaris var. bilunaris 

 
Gomphonema jadwigiae 

Eunotia boreotenuis 

 
Gomphonema minuta 

Eunotia cf. arcubus 

 
Gomphonema parvulum 

Eunotia cf. pomeranica 

 
Gomphonema truncatum 

Eunotia circumborealis 

 
Gomphonema intricatum var. vibrio 

Eunotia dianae-stitinensis 

 
Hippodonta capitata 

Eunotia elegans 

 
Chamaepinnularia mediocris 

Eunotia exigua 

 
Kobayasiella sp. 

Eunotia formicina 

 
Kobayasiella subtilissima 

Eunotia glacialis 

 
Lemnicola hungarica 

Eunotia implicata 

 
Luticola sp. 

Eunotia incisa 

 
Navicula cf. tenelloides 

Eunotia intermedia 

 
Navicula cryptocephala 



 

 

Navicula lanceolata 

 
Pinnularia pisciculus 

Navicula leptostriata 

 
Pinnularia polyonca var. similis 

Navicula molestiformis 

 
Pinnularia pseudogibba 

Navicula radiosa 

 
Pinnularia rhombarea 

Navicula rhynchocephala 

 
Pinnularia sinistra 

Navicula trivialis 

 
Pinnularia sp. 

Neidium ampliatum 

 
Pinnularia stomatophora 

Neidium bisulcatum 

 
Pinnularia subcapitata var. elongata 

Neidium hercynicum 

 
Pinnularia subcapitata var. subrostrata 

Nitzschia dissipata var. media 

 
Pinnularia subfalaiseana 

Nitzschia insignis 

 
Pinnularia subgibba 

Nitzschia sp. (morphotyp 1) 

 
Pinnularia subgibba var. undulata 

Nitzschia sp. (morphotyp 2) 

 
Pinnularia transversa 

Nitzschia sp. (morphotyp 3) 

 
Pinnularia undula 

Nitzschia sp. (morphotyp 4) 

 
Pinnularia viridiformis 

Nitzschia sp. (morphotyp 5) 

 
Pinnularia viridis 

Nitzschia sp. (morphotyp 6) 

 
Placoneis elginensis 

Nitzschia sp. (morphotyp 7) 

 
Planothidium frequentissimum 

Nitzschia sp. (morphotyp 8) 

 
Pseudostaurosira parasitica var. subconstricta 

Nitzschia sp. (morphotyp 9) 

 
Rhopalodia gibba 

Pinnularia acrosphaeria 

 
Rossithidium nodosum 

Pinnularia acuminata 

 
Rossithidium petersenii 

Pinnularia anglica 

 
Rossithidium pusillum 

Pinnularia angusta var. rostrata 

 
Sellaphora americana 

Pinnularia biceps 

 
Sellaphora pupula 

Pinnularia borealis var. borealis 

 
Stauroneis anceps 

Pinnularia brauniana 

 
Stauroneis cf. kriegeri 

Pinnularia cf. anglica 

 
Stauroneis cf. agrestis 

Pinnularia cf. frequentis 

 
Stauroneis cf. thermicola 

Pinnularia cf. obscura 

 
Stauroneis gracilis 

Pinnularia cf. subcommutata 

 
Stauroneis thermicola 

Pinnularia cf. tirolensis (mophotyp 1) 

 
Staurosira construens var. exigua 

Pinnularia cf. tirolensis (mophotyp 2) 

 
Staurosirella pinnata 

Pinnularia cf. tirolensis var. julma 

 
Stenopterobia curvula 

Pinnularia complexa 

 
Stenopterobia delicatissima 

Pinnularia cruxarea 

 
Surirella sp. 

Pinnularia frequentis 

 
Surirella angusta 

Pinnularia gibba 

 
Tabellaria fenestrata 

Pinnularia gibbiformis 

 
Tabellaria flocculosa 

Pinnularia isselana 

 
Ulnaria biceps 

Pinnularia macilenta 

 
Ulnaria ulna 

Pinnularia neomajor 

  Pinnularia nodosa 

  Pinnularia nodosa var. percapitata 

   



 

 

Appendix 5 Desmid species list from the complete dataset, i.e. 141 applicable samples. In total, there were 161 

species identified.  

Actinotaenium cf. gelidum 

 
Cosmarium cf. subtumidum 

Actinotaenium cf. phymatosporum 

 
Cosmarium cf. trilobulatum var. depressum 

Actinotaenium crassiusculum 

 
Cosmarium cf. turpinii var. eximium 

Actinotaenium cruciferum 

 
Cosmarium connatum 

Actinotaenium cucurbita 

 
Cosmarium contractum 

Actinotaenium inconspicuum 

 
Cosmarium contractum var. ellipsoideum 

Actinotaenium turgidum 

 
Cosmarium difficile 

Bambusina borreri 

 
Cosmarium discrepans 

Closterium abruptum 

 
Cosmarium formosulum 

Closterium acutum 

 
Cosmarium goniodes 

Closterium baillyanum 

 
Cosmarium impressulum 

Closterium calosporum var. brasiliense 

 
Cosmarium laeve 

Closterium calosporum var. maius 

 
Cosmarium laeve var. octangulare 

Closterium cf. archerianum var. minus 

 
Cosmarium margaritiferum 

Closterium cf. parvulum var. angustum 

 
Cosmarium obsoletum 

Closterium cf. turgidum 

 
Cosmarium obtusatum 

Closterium cf. venus 

 
Cosmarium pachydermum 

Closterium cornu 

 
Cosmarium paragranatoides 

Closterium dianae 

 
Cosmarium polygonatum 

Closterium directum 

 
Cosmarium portianum 

Closterium ehrenbergii 

 
Cosmarium pseudopyramidatum 

Closterium exiguum 

 
Cosmarium pyramidatum 

Closterium gracile 

 
Cosmarium quadratulum 

Closterium incurvum 

 
Cosmarium quadratum 

Closterium intermedium 

 
Cosmarium ralfsii var. montanum 

Closterium juncidum 

 
Cosmarium regnellii 

Closterium limneticum 

 
Cosmarium regnesii 

Closterium lineatum 

 
Cosmarium reniforme 

Closterium moniliferum 

 
Cosmarium sp. (morphotyp 1) 

Closterium parvulum 

 
Cosmarium sp. (morphotyp 2) 

Closterium pritchardianum 

 
Cosmarium sp. (morphotyp 3) 

Closterium rostratum 

 
Cosmarium sp. (morphotyp 4) 

Closterium setaceum 

 
Cosmarium sp. (morphotyp 5) 

Closterium striolatum 

 
Cosmarium sphagnicola 

Closterium venus 

 
Cosmarium subcostatum var. minus 

Cosmarium abbreviatum var. germanicum 

 
Cosmarium subcrenatum 

Cosmarium amoenum 

 
Cosmarium subquadrans var. minor 

Cosmarium cf. botrytis 

 
Cosmarium subtumidum 

Cosmarium cf. depressum 

 
Cosmarium tetraophthalmum 

Cosmarium cf. difficile 

 
Cosmarium thwaitesii var. penioides 

Cosmarium cf. margaritiferum 

 
Cosmarium tinctum 

Cosmarium cf. pseudoornatum 

 
Cosmarium wittrockii 

Cosmarium cf. punctulatum 

 
Cylindrocystis brebissonii 



 

 

Cylindrocystis gracilis 

 
Staurastrum lapponicum 

Euastrum ansatum 

 
Staurastrum margaritaceum 

Euastrum ansatum var. rhomboidale 

 
Staurastrum micron 

Euastrum ansatum var. robustum  

 
Staurastrum orbiculare var. depressum 

Euastrum bidentatum 

 
Staurastrum planctonicum 

Euastrum binale 

 
Staurastrum polymorphum 

Euastrum binale var. papilliferum 

 
Staurastrum polytrichum 

Euastrum denticulatum 

 
Staurastrum punctulatum 

Euastrum gayanum 

 
Staurastrum simonyi var. semicirculare 

Euastrum intermedium 

 
Staurastrum simonyi 

Euastrum luetkemuelleri 

 
Staurastrum sp. 

Euastrum obesum 

 
Staurastrum striolatum 

Euastrum pectinatum 

 
Staurastrum teliferum 

Euastrum sp. 

 
Staurastrum tetracerum 

Euastrum verrucosum 

 
Staurodesmus convergens 

Haplotaenium rectum 

 
Staurodesmus cuspidatus 

Hyalotheca dissiliens 

 
Staurodesmus dejectus var. apiculatus 

Micrasterias americana 

 
Staurodesmus dickiei 

Micrasterias crux-melitensis 

 
Staurodesmus extensus var. vulgaris 

Micrasterias jenneri 

 
Staurodesmus glaber 

Micrasterias rotata 

 
Staurodesmus octocornis 

Micrasterias thomasiana 

 
Staurodesmus omearae 

Micrasterias truncata 

 
Staurodesmus patens 

Micrasterias truncata var. semiradiata 

 
Staurodesmus sp.  

Netrium digitus 

 
Teilingia granulata 

Penium cylindrus 

 
Tetmemorus brebissonii var. minor 

Pleurotaenium ehrenbergii (morphotyp 1) 

 
Tetmemorus granulatus 

Pleurotaenium ehrenbergii (morphotyp 2) 

 
Tetmemorus laevis 

Pleurotaenium nodosum 

 
Tetmemorus laevis var. minutus 

Pleurotaenium trabecula 

 
Xanthidium antilopaeum 

Spondylosium pulchellum 

 
Xanthidium armatum 

Staurastrum alternans 

 
Xanthidium bifidum 

Staurastrum avicula var. avicula 

  Staurastrum avicula var. lunatum 

  Staurastrum bieneanum 

  Staurastrum bohlinianum 

  Staurastrum crenatum 

  Staurastrum dispar 

  Staurastrum gladiosum 

  Staurastrum gracile 

  Staurastrum gradiosum 

  Staurastrum hirsutum 

  Staurastrum chaetoceras 

   


