SNP data analysis In R

version 2017-01-05 (Filip Koldr)

1. What is a VVCF file?

Our set of ~ 10,000 single nucleotide polymorphisms (SNPs) is stored in the compressed (gzipped)

variant call format (VCF) file diploid_arenosa_dp8.perc0.5.vcf.gz. The dataset comprises 171

individuals from 64 populations of diploid Arabidopsis arenosa collected across entire geographical

range of this cytotype (for further details see the attached article, Kolar et al. 2016, Mol Ecol). We

collected two to four individuals per population what is too few for reliable estimation of intra-

a S(;:hum e cons @ ™M population variation. Thus, for the summary per-

-~ 1 ' population statistics, we will work with populations
lumped into five geographically and genetically

homogeneous groups (Baltic (BAL), Dinaric (DIN),

Pannonian (PAN), Western Carpathian (WCA),

Southern Carpathian (SCA); see the Fig 1). The

\ sample naming convention is:

2w Western Carpathians ; GROUPNAME(3digits) POPNAME(3digits)INDIVIDUA

- ... LNAME(1digit) - e.g. DIN_AA106A.

Fig. 1. The populations investigated, five

Pannonian

h @ ; : geographical groups depicted by different colour

_____

(Baltic pops are geographically separate but most
similar to the blue group).

VCF file is becoming a golden standard how to store
: % SNP data, let’s look at the structure of the file. The
provided VCF was already flltered using some standard criteria in GATK (the variant calling software
used); in addition, we retained only biallelic variable sites that were covered by at least 8 reads (8x)
in at least 50 % of the individuals. Do not open the huge gzipped VCF
diploid_arenosa_dp8.perc0.5.vcf.gz but look at the first nine SNPs that are saved in a separate file
mini_9SNP.vcf. Open it e.g. in Notepad++ and inspect:

e 1a) How many reads supported the first variable site (225723) over all samples (DP field)?
How many alleles were called in this site over all samples (the AN filed) and how many of
them were the alternative allele (AC)? Does the AN number correspond to the total number
of alleles that should be available in the total dataset (171 diploid individuals)? Why yes/not?

e 1b) What is the alternative allele in the second variable site (2 25749)? How many reads
supported this allele in the first individual (WCA_AAOQ07A) (Hint: this is the corresponding
number in the “AD”, = allele depth, field)?

e 1c) What was genotype quality, GQ, of the heterozygote call (0/1) in the second variable site
(2 25749) the first individual (WCA_AA007A)? What does this number mean (Hint look at
GATK, the software used for variant calling in this VCF, manual pages here
http://gatkforums.broadinstitute.org/gatk/discussion/1268/what-is-a-vcf-and-how-should-i-
interpret-it, search for “Genotype quality”

e 1d) Write a tiny fasta file by converting all the 9 variable sites of the VCF in the first two
individuals (WCA_AAO007A, WCA_AA007B) into DNA base positions (ATCG). Code the intra-




individual polymorphisms (heterozygotes) using standard IUPAC ambiguity codes (Hint you
will need only this one: C/T=Y). NB: the slightly modified VCF without INFO field
(mini_9SNP_noinfofield.vcf) is more easily readable for this purpose.

e 1e) What is expected heterozygosity, He, of the second variable site (2 25749) of the first
population (WCA_AA007, has four individuals)? Hint: He = 2pq; during calculations disregard
individuals with missing data (./.).

2. Basic inspection of a VCF in R

Now load the entire VCF into R and inspect it more seriously. We will sequentially create an R script
file containing all the commands necessary for our analyses. If you save it during the process, you can
rerun the entire set of analyses again whenever you want.

Open R Studio,

e File -> New File -> R Script - save this new file to your working directory (the same with input
files)

e Session -> Set Working Directory -> To source file location

e Now sequentially copy-paste following commands to the new R file and run each batch. To
run the command, highlight the lines you just inserted by mouse and press small icon with
green arrow and ,,Run”in the upper right corner.

First load the required libraries for all the downstream analyses —i.e. add the following text to your
script and Run

library (vcfR)
library (adegenet)
library (adegraphics)
library (pegas)
library (StAMPP)
library(lattice)
library (gplots)
library (ape)

library (ggmap)

Now load the data and check the input. (NB: in this section we will use the vcfR package, for more
info incl. tutorials see https://cran.r-project.org/web/packages/vcfR/vignettes/intro to vcfR.html).

vcf <- read.vcfR("diploid arenosa dp8.perc0.5.vcf.gz") #read in all data
head (vcf) #check the vcf object
vef@efix([1:10,1:5] #check

Then plot important statistics summed over entire VCF

chrom <- create.chromR (name='RAD data', vcf=vcf)
plot (chrom) # plot the data

Then extract the allele depths per each sample (DP field of VCF) and plot distribution of allele depths
of all sites per each sample. NB: You may inspect and visualize other fields of VCF, e.g. allele depth
(AD) or genotype quality (GQ)

#quick check read depth distribution per individual
dp <- extract.gt(vcf, element='DP', as.numeric=TRUE)

pdf ("DP_RAD data.pdf", width = 10, height=3) # boxplot
par (mar=c(8,4,1,1))



boxplot (dp, las=3, col=c("#COCOCO", "#808080"), ylab="Read Depth (DP)",
las=2, cex=0.4, cex.axis=0.5)
dev.off ()

#fzoom to smaller values

pdf ("DP_RAD data zoom.pdf", width = 10, height=3) # boxplot

par (mar=c(8,4,1,1))

boxplot (dp, las=3, col=c("#COCOCO", "#808080"), ylab="Read Depth (DP)",
las=2, cex=0.4, cex.axis=0.5, ylim=c(0,50))

abline (h=8, col="red")

dev.off ()

e 2a) Which two samples have the highest average depth (DP) of their variable sites?

e 2b) In the intro we specified that after filtering this VCF, we retained only sites that were
covered at least 8x in at least 50% of the individuals. Are there still sites with DP < 8 (i.e
below the red line in the DP_RAD_data_zoom.pdf file)? Why?

e 2c) Would you remove any sample from this VCF based on read depth filtering criteria?
Which and why?

3. Basic manipulation of a SNP matrix (genlight)

Convert the data into adegenet-native format called genlight.

### convert to genlight
aa.genlight <- vcfR2genlight (vcf, n.cores=1)

locNames (aa.genlight) <- paste(vcfefix[,1],vcfefix[,2],sep="_") # add
real SNP.names
pop (aa.genlight) <-substr (indNames (aa.genlight), 1, 3) # add pop

names: here "population" (group) names are first 3 chars of ind name

Now, check the genlight using following commands.

NB: the original matrix of biallelic SNPs is stored in a way of one number per individual per site that
reflects the number of alternative alleles in that site in that individuals (i.e. 0, 1, or 2 in a diploid
individual).

# check the genlight

aa.genlight # check the basic info on the genlight
object

indNames (aa.genlight) # check individual names
as.matrix(aa.genlight) [1:16,1:10] # see tiny bit of the data

pop (aa.genlight) # population assignment

# look at the total data matrix (0,1,2; white = missing data)
glPlot (aa.genlight) # takes some time

# N missing SNPs per sample

X <- summary (t(as.matrix(aa.genlight)))

write.table(x[7,], file = "missing.persample.txt", sep = "\t") # NAs, if
present, are in seventh row of summary

e 3a) How many SNPs are in the total dataset?
e 3b) Look at the small piece of the data matrix using command
as.matrix (aa.genlight) [1:16,1:10].Compare the 0,1,2 coding of the first



individuals with the mini_9SNP.vcf file you inspected in the first section. Into which number
of the genlight matrix is translated the 1/1 genotype of the original VCF?

e 3c) Look at the figure produced by glPlot. Why are the missing data depicted by white colour
and not by the blue colour (i.e. zeros, 0, in the genlight matrix)

e 3d) How much missing data is there? How do the missing data correspond with average read
depth per sample? (Hint: visually compare the DP_RAD_ data_zoom.pdf file with numbers in
the missing.persample.txt output file)

4. Draw allele frequency spectra (AFS)

Now let’s look at some population-level summary statistics. We will plot the unfolded allele
frequency spectrum (AFS, SFS), i.e. distribution of counts of alternative (non-reference) alleles across
all sites in the population. This is essential population summary characteristics frequently used e.g. in
the coalescent simulations; for more info on AFS see e.g. Wikipedia. NB: Missing data are problem in
AFS construction; in our toy example we simply remove all SNPs with missing data, in reality there
are more clever ways of maximizing the information which is used for AFS calculation.

Fist show AFS for the entire dataset.

###tplot total AFS of the dataset

mySum <- glSum(aa.genlight, alleleAsUnit = TRUE)

barplot (table (mySum), col="blue", space=0, xlab="Allele counts",
main="Distribution of ALT allele counts in total dataset")

Second, visualize AFS only for one selected population (BAL)

##t#fplot AFS per one pop

aa.genlight.sep <- seppop(aa.genlight, drop=TRUE) #
separate genlights per population

aa.genlight.sep$BAL

# after seppop you must remove the nonvariant positions within the
population
n.alleles.BAL <-colSums(as.matrix(aa.genlight.sep$BAL)) # how many
alternative alleles are in each locus?
summary (as.factor(n.alleles.BAL)) # how many
particular categories of alternative allele counts are in my pop?
aa.genlight .BAL <- new("genlight", (as.matrix(aa.genlight.sep$BAL))

[, (colSums (as.matrix (aa.genlight.sep$BAL)) > 0) &

(colSums (is.na(as.matrix (aa.genlight.sep$BAL)))

0)1) # remove the reference-only positions AND remove columns with NA
aa.genlight.BAL
summary (colSums (as.matrix (aa.genlight .BAL))) # check if there are no
Zeros
# plot unfolded AFS - for one pop.
mySum <- glSum(aa.genlight.BAL, alleleAsUnit = TRUE)
barplot (table (mySum), col="blue", space=0, xlab="Allele counts",
main="Distribution of ALT allele counts in BEL") # plot the original
counts of each category

Now, plot AFS for all populations in a batch and save this into a pdf file (i.e., using lapply function
which goes over all elements of the list of genlights)



#### plot AFS for all pops in a batch
aa.genlight.sep <- seppop(aa.genlight, drop=TRUE) # separate genlight per
population
# remove the nonvariant positions AND columns with NA within that pop.
aa.genlight.sep.2 <- lapply (aa.genlight.sep, function (pop)
{new("genlight", (as.matrix(pop)) [, (colSums (as.matrix(pop)) > 0)
& (colSums(is.na(as.matrix(pop))) == 0)1)})
##add pop identity to list elements
listnames<-names (aa.genlight.sep.2)
for (i in seqg(listnames)) {pop(aa.genlight.sep.2[[i]])<-
substr (indNames (aa.genlight.sep.2[[1]]),1,3)}

# loop over each population in a list of populations and draw AFS into one
fig

pdf ("AFS_all barplot.pdf", width=5, height=5)

par (mfrow=c(2,3) ,mar=c(2,2,2,0))

mySum <- lapply (aa.genlight.sep.2, function (pop) {

barplot (table (glSum(pop, alleleAsUnit=T)), col="blue", space=0,
xlab="Allele counts",
main=paste (levels (pop (pop) ), sum(table (glSum(pop, alleleAsUnit=T))), "SNPs",
Sep=ll II) )
1)
dev.off ()

par (mfrow=c (1,1))

e 4a) How many SNPs were used for construction of AFS in the BAL population?

e 4b) Compare AFS of all five populations (groups) in the fig. AFS_all_barplot.pdf. Which
population has most distinct AFS? Which allele count categories in this population are
underrepresented relatively to the other populations? What biological process might have
been responsible for this?

e 4c) In all the AFS plots you may observe the rightmost column, i.e. number of fixed
alternative alleles, is quite high. These sites are in fact non-variant sites across our entire
dataset. Why did such sites remain in our VCF, as our dataset includes only single nucleotide
polymorphisms? Try to remove such sites with fixed alternative alleles from the BAL
population and plot the AFS again. Hint: calculate maximum number of alleles per pop: nchr
<- (nrow(as.matrix(aa.genlight.sep$BAL)) *2) and then add this criterion to

the selection of SNPs when constructing the corresponding genlight (aa.genlight.BAL): &
(colSums (as.matrix (aa.genlight.sep$BAL)) != nchr

5. Principal component analysis (PCA) and subsetting of the data

Calculate and visualize PCA for the total dataset. NB: if you have problems with parallelization, add
and Run into R the function glPcaFast, that is available in the appendix at the very end of this

document.
pca.l <- glPca(aa.genlight, nf=300, n.cores=1) # retain first 300 axes
(for later use in find.clusters); slow function

#pca.l <- glPcaFast (aa.genlight, nf=300)

# proportion of explained variance by first three axes
pca.lseigll] /sum(pca.lSeig) # proportion of variation explained by 1lst axis
pca.lseigl2] /sum(pca.lSeig) # proportion of variation explained by 2nd axis



pca.lSeig([3] /sum(pca.lSeig) # proportion of variation explained by 3rd axis

# save fig
pdf ("PCA all SNPs axl12.pdf", width=14, height=7)
col <- funky(5)
gl <- s.class(pca.l$scores, pop(aa.genlight), xax=1l, yax=2,
col=transp(col, .6),

ellipseSize=0, starSize=0, ppoints.cex=4, paxes.draw=T,
pogrid.draw =F, plot = FALSE)
g2 <- s.label (pca.l$scores, xax=1l, yax=2, ppoints.col = "red", plabels =
list (box = list (draw = FALSE),

optim = TRUE), paxes.draw=T, pgrid.draw =F, plabels.cex=1, plot = FALSE)
ADEgS(c(gl, g2), layout = c(1, 2))
dev.off ()

Subset the genlight to select only Carpathian and Baltic populations and calculate PCA. Compare the
figure with Fig 2 in the article

include.list <- grep (" (WCA|SCA|BAL)", indNames (aa.genlight), value = T)
# get list of samples matching the desired groupnames
aa.genlight .BALCARP <- new("genlight",

(as.matrix (aa.genlight) [include.list, 1)) # create new genlight using this
selection

aa.genlight .BALCARP <- new("genlight", (as.matrix(aa.genlight.BALCARP))

[, (colSums (is.na (as.matrix(aa.genlight.BALCARP))) < 60)]) # retain only

positions with no-missing data in > 50% individuals

pop (aa.genlight .BALCARP) <-substr (indNames (aa.genlight .BALCARP),1,3) # add
pop names: here pop names are first 3 chars of ind name

aa.genlight .BALCARP

#pca.2 <- glPca(aa.genlight.BALCARP, nf=300, n.cores=1) # retain first
300 axes (for later use in find.clusters); slow function
pca.2 <- glPcaFast (aa.genlight.BALCARP, nf=300) # for running

this, firstly tun the modified function at the end of this doc

# save fig
pdf ("PCA BALCARP SNPs ax1l2.pdf", width=14, height=7)
col <- funky(3)
gl <- s.class(pca.2$scores, pop(aa.genlight.BALCARP), xax=1l, yax=2,
col=transp(col, .6),

ellipseSize=0, starSize=0, ppoints.cex=4, paxes.draw=T,
pogrid.draw =F, plot = FALSE)
g2 <- s.label (pca.2$scores, xax=1l, yax=2, ppoints.col = "red", plabels =
list (box = list (draw = FALSE),

optim = TRUE), paxes.draw=T, pgrid.draw =F, plabels.cex=1, plot = FALSE)
ADEgS (c(gl, g2), layout = c(1, 2))
dev.off ()

e 5a) Which group is the most divergent from the rest?

e 5b) Does the position of the BAL population in the second, Carpathian+Baltic-only PCA,
support its origin through admixture of the two Carpathian groups (SCA, WCA)?

e 5¢) In the section 3, we used the substr command for creating the population names using
the “group” part of the individual name (i.e. first 3 digits). Modify this command to create
population assighment using real population names (i.e. the AAOO7 etc. codes) and rerun the



PCA to see how are the populations organized. (Hint: look what substr does by
typing ?substr)

6. K-means clustering and discriminant analysis of principal components (DAPC)

K-means clustering is a fast method how to assign individuals into groups. Unlike STRUCTURE it does
not make assumptions on population genetic parameters such as Hardy Weinberg equilibrium. We
will perform K-means clustering using the already calculated gIPCA object to save some time.
Following lines are just a set of commands how to calculate K-means clustering and DAPC, however,
on the way you will have to do several important decisions. If you would like to seriously use this
method, you should first read the following tutorial adegenet.r-forge.r-project.org/files/tutorial-
dapc.pdf.

Type the following command (we will do clustering for K from 1 to 20 clusters, using many, 1,000,000,
random starts) and then answer two interactive questions:

grp <- find.clusters(aa.genlight, max.n.clust=20, glPca = pca.l, perc.pca =
100, n.iter=1e6, n.start=1000)

e At the first question (“Choose the number PCs to retain (>=1):") use all PC axes for the
grouping, i.e., just press Enter and wait ca 30 seconds

e At the second question (“Choose the number of clusters (>=2:") select the optimal number of
groups (K). This is the trickiest task in any clustering method. Adegenet offers Bayesian
information criterion (BIC, simultaneously plotted in the Plots panel) to aid our decision.
Optimally you should select the lowest BIC value before the values starts to rise again. Type 4
in our case.

You may save this grouping and open it later, e.g. in excel...

write.table (grpsgrp, file="grouping Kmeans all.txt", sep="\t", quote=F,
col .names=F)

Let’s plot this grouping onto a map using ggmap. Make sure that you have the file with coordinates
of the populations (pop_coords.txt) in the working directory.

# ugly quick hack to prepare the grouping of populations, not individuals
X <- data.frame (keyName=names (grp$grp), value=grp$grp, row.names=NULL) #
convert vector into data frame

xSpop <- as.factor (substr (x$keyName,5,9)) # get population identity
y<-x[order (x$pop) , ] # order it

grp.pop<-y[!duplicated (y$Spop),] # remove duplicates (one line per pop)
coords <- read.csv ("pop coords.txt", sep ="\t") # import tab-sep file
# plot it!

map <- get map(location = c(lon = 14, lat = 50), zoom = 5)

mapPoints <- ggmap (map) + geom point (aes(x = coords$lon, y = coordss$lat,
colour = factor(grp.popsSvalue)),

data = grp.pop) + scale colour manual (values =
c("red", "blue", "black", "green"))
mapPoints



Based on this this grouping, we may calculate discriminant analysis of principal components (DAPC).

dapcl<-dapc (aa.genlight, grp$grp, glPca = pca.l)

e At the first question, select a reasonable N of PCs without sacrificing too much information,
e.g. 50

e At the second question, select N of discriminant functions. As we selected K=4 we have only
three discriminant axes, let’s select all three.

You may plot the results either as a scatter plot or using the barplot showing the proportions of
membership to each of the K-means groups, somewhat similarly to Structure.

## plot results

scatter (dapcl) # scatterplot

col <- funky(5)

compoplot (dapcl, cex.names = 0.4, legend=F, col=col)
# barplot

pdf ("DAPC all.pdf",width=20,height=5)
compoplot (dapcl, cex.names = 0.4, legend=F, col=col)
dev.off ()

7. Calculation and visualization of Nei’s distances

First calculate the matrices of Nei’s (1972) distances among individuals and populations as well as
pairwise Fst among populations (and save them in phylip format)

### Calculate Nei's distances between individuals/pops

aa.D.ind <- stamppNeisD(aa.genlight, pop = FALSE) # Nei's 1972 distance
between indivs

stamppPhylip(aa.D.ind, file="aa.indiv Neis distance.phy.dst") # export
matrix - for SplitsTree

aa.D.pop <- stamppNeigD(aa.genlight, pop = TRUE) # Nei's 1972 distance
between pops

stamppPhylip(aa.D.pop, file="aa.pops Neis distance.phy.dst") # export
matrix - for SplitsTree

### Calculate pairwise Fst among populations

aa.genlighteploidy <- as.integer (ploidy(aa.genlight))
aa.fst<-stamppFst (aa.genlight, nboots = 1, percent =95, nclusters=4)
#modify the matrix for opening in SplitsTree

aa.fst.sym <- aa.fst

aa.fst.sym[upper.tri(aa.fst.sym)] <- t(aa.fst.sym) [upper.tri(aa.fst.sym)]
# add upper triangle

aa.fst.sym[is.na(aa.fst.sym)] <- 0

#replace NAs with zero

stamppPhylip(aa.fst.sym, file="ALL aa.pops_pairwise Fst.phy.dst") #
export matrix - for SplitsTree

Once the first matrix is calculated and saved, take a small detour, open the *dst files in SplitsTree.

e 7a) How does the interpopulation Neis’s and pairwise Fst distances differ? What can you tell
about position of the WCA/SCA/BAL groups?



Another nice visualization of the distances is a heatmap. Plot it, save and look into the
Neis_dist_heatmap.pdyf.

e 7b) What would you say about the homogeneity of the SCA group and about the position of
the BAL group?

### heatmap of the indivs distance matrix

colnames (aa.D.ind) <- rownames(aa.D.ind)

pdf (file="Neis dist heatmap.pdf", width=10, height=10)
heatmap.2(aa.D.ind, trace="none", cexRow=0.4, cexCol=0.4)
dev.off ()

Optionally, you may also visualize the distances as Neighbor joining tree or heatmap. The saved
NJ.Neis.dist.tree.tre file could be then opened and edited, e.g. in Figtree

# plot and save NJ tree
plot (nj(aa.D.ind))
write.tree(nj(aa.D.ind),file="NJ.Neis.dist.tree.tre")

8. Calculation of AMOVA and isolation-by-distance based on Nei’s distances

Now let’s work with the real 64 populations, coded by the AAXXX codes. The five geographical groups
will serve as grouping variables in hierarchical AMOVA. First define a new genlight with different
population definition plus define the grouping variable:

#### DEFINE the 64 original populations using the AAXXX codes

aa.genlight2 <- aa.genlight

pop (aa.genlight2) <-substr (indNames (aa.genlight2),5,9) # define populations
as the AAXXX codes

Then calculate interpopulation distances using this new population definition, and modify these
distance matrices into a “dist” object, used in the analyses below

aa.D.pop2 <- stamppNeisD (aa.genlight2, pop = TRUE) # Nei's 1972
distance between pops

stamppPhylip(aa.D.pop2, file="aa.pops2 Neis distance.phy.dst") # export
matrix - for SplitsTree

# create the dist objects used in analyses below

colnames (aa.D.ind) <- rownames (aa.D.ind)

aa.D.ind.dist<-as.dist (aa.D.ind, diag=T)

attr(aa.D.ind.dist, "Labels")<-rownames (aa.D.ind) # name the rows
of a matrix

colnames (aa.D.pop2) <- rownames (aa.D.pop2)

aa.D.pop.dist<-as.dist (aa.D.pop2, diag=T)

attr(aa.D.pop.dist, "Labels")<-rownames (aa.D.pop2) # name the rows
of a matrix

Now calculate analysis of molecular variance (AMOVA) using the Nei’s inter-individual distances with
AAXXX populations and the five major geographical groups as grouping factors

### AMOVA

pops <- as.factor (pop(aa.genlight2)) # define
populations

groups <- as.factor (substr (indNames (aa.genlight2),1,3)) # define groups



# one-level AMOVA
(res <- pegas::amova(aa.D.ind.dist ~ pops)) # one-level AMOVA,
default nperm=1000

# hierarchical AMOVA
(res <- pegas::amova(aa.D.ind.dist ~ groups/pops)) # hierarchical AMOVA

e 8a) What proportion of variation was explained by the real populations (Hint: divide the pops
SSD / Total SSD)? Why is this number so high? What proportion of variation was explained by
the five geographic groups?

Finally, calculate whether isolation-by distance relationship holds for our populations, i.e. whether
there is significant correlation among matrices of genetic (Nei’s or Fst) and geographical distances
among the real (AAXXX) populations. Make sure that you have the file with coordinates of the
populations (pop_coords.txt) in the working directory (the order should be exactly the same as that
of individuals in the genlight object).

First, load in the coordinates and check the input on a map

### Isolation by distance

coords <- read.csv ("pop coords.txt", sep ="\t") # tab-separated file
for all pops
xy.coords.only<- subset (coords, select=c("lat","lon"))

Dgeo <- dist (xy.coords.only)

#optionally, check plotting the points on a map
library (ggmap)

map <- get map(location = c(lon = 14, lat = 50), zoom = 5)

mapPoints <- ggmap (map) + geom point (data = coords, aes(x = lon, y = lat,
colour="blue")) + geom text (data = coords, aes(x = lon, y = lat,label = pop,
colour = "red"), size = 4, vjust = 0, hjust = -0.5)

mapPoints

Then, calculate the Mantel test

#test IBD
IBD <- mantel.randtest (Dgeo,aa.D.pop.dist)
IBD

plot (Dgeo,aa.D.pop.dist, pch=20,cex=.5)
abline(lm(aa.D.pop.dist~Dgeo))

Finally, plot the isolation-by distance relationship in a nicer plot. The density of points is plotted in a
kernel-smoothed colour scale.

#plot and check for denser areas in the plot indicating sub-groups
library (MASS)

dens <- kde2d(Dgeo,aa.D.pop.dist, n=300, lims=c(-1, 16, 0, 0.08))
myPal <- colorRampPalette(c("white", "blue", "gold", "orange", "red"))
plot (Dgeo, aa.D.pop.dist, pch=20,cex=.5)

image (dens, col=transp(myPal(300),.7), add=TRUE)
abline(lm(aa.D.pop.dist~Dgeo))

title("Correlation of Genetic and Geographical distances")



e 8b) Is there significant isolation-by distance? What is the correlation coefficient of
geographical and genetic distances (see the “Observation:” line)?

APPENDIX

Modified function for faster PCA calculations

glPcaFast <- function (x,
center=TRUE,
scale=FALSE,
nf=NULL,
loadings=TRUE,
alleleAsUnit=FALSE,
returnDotProd=FALSE) {

if (!inherits(x, "genlight")) stop("x is not a genlight object")
# keep the original mean / var code, as it's used further down
# and has some NA checks..
if (center) {
vecMeans <- glMean(x, alleleAsUnit=alleleAsUnit)
if (any (is.na(vecMeans))) stop("NAs detected in the vector of means")
}
if (scale)
vecVar <- glVar(x, alleleAsUnit=alleleAsUnit)

if (any (is.na(vecVar))) stop("NAs detected in the vector of variances")

}

# convert to full data, try to keep the NA handling as similar
# to the original as possible
# - dividing by ploidy keeps the NAs
mx <- t(sapply(x$gen, as.integer)) / ploidy(x)
# handle NAs
NAidx <- which(is.na(mx), arr.ind = T)
if (center) {

mx [NAidx] <- vecMeans [NAidx[,2]]
} else {

mx [NAidx] <- 0
}
# center and scale
mx <- scale(mx,

center = if (center) vecMeans else F,
scale = if (scale) vecVar else F)

all dot products at once using underlying BLAS
to support thousands of samples, this could be
replaced by 'Truncated SVD', but it would require more changes
in the code around
allProd <- tcrossprod(mx) / nInd(x) # assume uniform weights
## PERFORM THE ANALYSIS ##
## eigenanalysis
eigRes <- eigen(allProd, symmetric=TRUE, only.values=FALSE)
rank <- sum(eigRes$values > le-12)
eigRessvalues <- eigRes$values[1:rank]
eigRessvectors <- eigRes$vectors([, 1l:rank, drop=FALSE]
## scan nb of axes retained
if (is.null (nf)) {

barplot (eigRessSvalues, main="Eigenvalues", col=heat.colors (rank))

cat ("Select the number of axes: ")

nf <- as.integer(readLines(n = 1))

}

## rescale PCs

H H H



res <- list()
res$eig <- eigResSvalues
nf <- min(nf, sum(resseig>1le-10))
##ressmatprod <- allProd # for debugging
## use: 1i = XQU = V\Lambda” (1/2)
eigRes$vectors <- eigRes$vectors * sgrt (nInd(x)) # D-normalize vectors
res$scores <- sweep (eigRes$vectors([, 1:nf, drop=FALSE], 2,
sqgrt (eigResS$values [1:nf]), FUN="=*")
## GET LOADINGS ##
## need to decompose X*“TDV into a sum of n matrices of dim p*r
## but only two such matrices are represented at a time
if (loadings) {
if (scale) {
vecSd <- sgrt (vecVar)
}
res$loadings <- matrix (0, nrow=nLoc(x), ncol=nf) # create empty matrix
## use: cl = X"TDV
## and X"TV = A 1 + ... + A n
## with A k = X _[k-1°T v[k-]
myPloidy <- ploidy (x)
for(k in 1:nInd(x)) {

temp <- as.integer (x@gen[[k]]) / myPloidy [k]
if (center) {
temp[is.na(temp)] <- vecMeans[is.na (temp)]
temp <- temp - vecMeans
} else {

temp[is.na(temp)] <- 0
}
if (scale) {

temp <- temp/vecSd

}

res$loadings <- res$loadings + matrix(temp) %*% eigResS$vectors [k,
1:nf, drop=FALSE]

}

res$loadings <- ress$loadings / nInd(x) # don't forget the /n of X tDV
res$loadings <- sweep(res$loadings, 2, sqgrt(eigResSvalues[l:nf]),
FUN=" / n )

}

## FORMAT OUTPUT ##

colnames (res$scores) <- paste("PC", 1:nf, sep="")
if (lis.null (indNames (x))) {

rownames (res$scores) <- indNames (x)
} else {

rownames (res$scores) <- 1:nInd(x)

}

if (!is.null (res$loadings)) {

colnames (res$loadings) <- paste("Axis", 1:nf, sep="")
if (!is.null (locNames (x)) & !is.null(alleles(x)))

rownames (res$loadings) <- paste(locNames (x),alleles(x), sep=".")
} else {

rownames (res$loadings) <- 1l:nLoc (x)
}
}
if (returnDotProd) {

res$SdotProd <- allProd
rownames (res$dotProd) <- colnames (res$SdotProd) <- indNames (x)
}
resScall <- match.call()
class(res) <- "glPca"
return (res)



