
you
experienced?
A small introduction to R.

Patrick Meirmans,
IBED, Universiteit van Amsterdam

p.g.meirmans@uva.nl
© P.G. Meirmans, October 2010.

mailto:p.g.meirmans@uva.nl
mailto:p.g.meirmans@uva.nl

1. Using the interface! 3
The console! 3
Variables! 4
The workspace! 5
R documents! 5
Packages! 6
Help ! 7

2. Strings, numbers, & vectors! 8
Strings! 8
Numbers & vectors! 8
Vector operations! 9
Accessing vector elements! 10
Logic! 11

3. Arrays & matrices! 13
Creating a matrix! 13
Array calculations! 14
Accessing array elements! 14

4. Factors, lists & data frames! 16
Factors! 16
Lists! 16
Data frames! 17

5. Working with files! 19
The working directory ! 19
Reading files! 19
Writing data! 19

6. Functions! 20
Arguments! 20
Output! 21
Writing your own functions! 22

7. Graphics! 25
Simple plots! 25
Default plots! 27
A more complex example! 27
Other types of graphs! 28

8. Analyses! 30
A simple Anova! 30
More on models! 31

2

1. Using the interface

The console

When you start R, you will be presented with the R console. This is where you will do a

lot of your work with R. To work with R, you will have to enter equations and

commands into the console. All output will also be written to the console. For example,

you can type simple equation after the "> " prompt (but don’t type the ">" itself!):

> 1+1

If you now hit "Enter", you will see the output:

[1] 2

The [1] indicates that this line begins with the first element of the output. A lot of

different mathematical operators and functions are possible, such as:

> sqrt(16)

> log(22)

> exp(4)

> pi

> sin(pi)

> (4 * 3^2) / (3 %% 2)

Try to find out by some experimentation what the above-used %% operator does (and ^ if

you can’t guess). Note that in general, spaces don’t matter as long as they are not in the

middle of a name, so sqrt(16) is the same as sqrt(16), or sqrt (16).

You can use this to improve the readability of your code. For example the last equation

above is more readable than without spaces: (4*3^2)/(3%%2).

R stores the history of entries you made into the console. If you want to recall

something you typed earlier, you can hit the up-arrow on your keyboard to see your

previous entries (and the down-arrow to go forward again in your history). When you

have selected a previous entry, just hit "Enter" to run it again.

3

Variables

When you type an equation into the console, like you did above, the results are simply

printed to the console and that’s it. Mostly, you will actually want to do more with the

results of your calculations. Therefore, you can store the result into a variable:

> a = 2 + 1

You will notice that when you type this in, no output is produced. If you want to know

the value of a, you simply have to type:

> a

The variable that you defined can now further be used in equations:

> b = a + 1

> c = sqrt(a^2 + b^2)

Another way of appointing variables is to use the <- operator, this is the "official" way

of doing it which is used in all books on R. There seems to be a small number of cases

where <- works better than =, but I have never encountered them. Since I find = more

intuitive, I will use this, but be aware that most of the R-community disagrees.

The names of variables can be anything that starts with a letter, and can also

include many other characters as "." or "_", and also so numbers (but it cannot start

with them). The names are case-sensitive, so variable Patrick is something else than

patrick. The range of allowed characters for variable names depends on the operating

system and language, so it is best to be conservative and use standard Latin characters.

Spaces are not allowed, if you want to make your variables names more descriptive (and

please do), it is common practice to separate words in the name by dots:

> number.of.hours <- 24

You also have to be careful not to use names that are in use by R for functions, such as:

> exp = exp(42)

This can go right for many times but can also sometimes give very hard to solve

problems.

4

The workspace

All variables and functions that you define are stored internally in what R calls the

"workspace". You can get a view of all variables by choosing "Show workspace" in the

"Workspace" menu. Equivalently, you can type ls() into the console. If you entered all

of the above, this will give the following output:

[1] "a" "b" "c" "exp" "number.of.hours"

Another way to get an overview of what’s in your workspace in by selecting

"Workspace browser" from the menu. As explained above, it is bad practice to use the

name exp since it is also the name of a standard function. Therefore, it is better to

remove this variable from the workspace:

> rm(exp)

Now verify that the variable has indeed been removed (there are several ways to do this,

can you think of two?).

If you want to remove all variable in the workspace select "Clear Workspace",

after which you will be asked for a confirmation. It is also possible to save workspaces

and reopen them later. In fact, the program will ask you whether you want to save your

workspace when you quit R. I never do, and actually switched this off in the

preferences, but you might find this handy.

More often than cleaning your workspace, you might want to remove all the

clutter in your console (for example if you made a lot of embarrassing mistakes). For

this, select "Clear console" from the "Edit" menu. If you do this, all variables you

defined will still exist in the workspace, you just don’t see anymore where you defined

them.

R documents

Besides entering commands line by line into the console, it is also possible to first write

a whole script in a text file and then execute that in R. To create such documents, the R

interface also contains a text editor. You can get a new empty document by choosing

"New Document" from the "File" menu. If you do this, you get a new document in

which you can define variables and type some equations and commands. To execute a

5

portion of the script, select it and choose "Execute" from the "Edit" menu (or the

shortcut Apple-Enter on a Mac). For executing the whole script, simply select it all and

then choose "Execute". What happens if you execute without making a selection?

R documents (with extension .R) can be saved and reopened like any normal

file, which makes them ideal to store your analyses. This way, you can base any future

analyses on your old ones, without having to reinvent the wheel every time. For this

document, when a bit of code is preceded by "> ", you should type it directly into the

console. Otherwise, type it into a document and execute it.

Packages

Even though R contains a lot of different statistical functions, for specialised analyses

you will quickly find that the function you are looking for is not included. Luckily there

are thousands of so-called packages available which can extend the capabilities of R by

providing additional functions.

R comes with quite some packages included when you install it, but not all are

loaded ("switched on") by default. To see which packages are currently available on

your computer and to see which ones are loaded, you can choose "Package Manager"

from the "Packages & Data" menu. You will see a list with all available packages, each

with a switch button before its name; simply switch the button to load the package. If

you have a certain R document that requires that a certain package is loaded before the

code can run, it may be handier to actually include some code to load a package at the

first line of the document. For example, to load the "vegan" package for vegetation

analysis, you can type:

> library(vegan)

If the package is not available you will get a warning (as you may have experienced if

you tried the above command). Packages can be added to your computer via the CRAN

website; the Comprehensive R Archive Network. The R program has a direct interface

to get packages from CRAN, simply choose "Package Installer" from the "Packages &

Data" menu. In the window that pop up you can click the "Get List" button to see all

packages available in the repository. Now you can select a package and click the "Install

Selected" button. It may be wise to first check the "install dependencies" button. This

6

will make sure that if the selected package relies on other packages, these will also be

downloaded if they are not on your computer.

Help

Though there is very extensive onscreen Help for R, finding out how to do things using

this Help is rather difficult. If you want to calculate an average, and you type “average”

into the search box, you will not discover that you actually have to use the function

called mean. Instead of helping you find the functions to do what you want, the Help-

files consist of a documentation that explain how the available functions work. If you

want to know how the mean function works, you can type mean into the Help-search-

box (or type ?mean in the console) and you will get a rather tersely written overview of

what the function does. So if you know the name of the function, but can’t remember

exactly how it works, use Help. If you want to find out how to do something in R, use

Google.

7

2. Strings, numbers, & vectors

Strings

A string is programmers-speak for a series of characters, so what all other people would

call "text". Strings can also be stored in variables:

> file.name = "data nature paper.txt"

In the console output, strings are immediately recognisable by the quotation marks. For

example, the output of the ls() function you used above consists of a number of

strings. At the moment we will leave it with this, but later you will see that strings have

important tasks as names and for factors.

Numbers & vectors

In R, vectors are rows of concatenated numbers. Vectors are everywhere in R. In fact,

they are so pervasive that single numbers are actually equivalent to vectors of length

one. If you understand how to work with vectors, you know the most important thing

there is to learn about R. The simplest way to create a vector is as follows:

> pH = c(4.3, 4.7, 4.2, 4.5)

The function name c is short for "concatenate". If you now check the value of the

variable pH, you will see that the console returns:

[1] 4.3 4.7 4.2 4.5

Also here, variable names can be used to combine vectors. For example, this will

replace the previous vector pH with a slightly longer one:

> pH = c(pH, 7.0, 6.7)

There are many ways to create vectors. Try to figure out what the following commands

do:

> b = 1:10

> d = seq(0, 1, 0.1)

> e = rep(b, 5)

> f <- rep(b, each=5)

8

> g = runif(12, min=10, max=20)

Vector operations

Since R is a statistical framework, it contains a lot of functions for calculating summary

statistics on data, such as the mean, variance, etc. For many such functions, vectors are

the main input:

> pH = c(4.3, 4.7, 4.2, 4.5, 7.0, 6.7, 7.2, 7.5)

> mean(pH)

> var(pH)

> sd(pH)

> length(pH)

> max(pH)

> sort(pH)

Of course, you can also make a vector out of these results. How do you make a vector

containing the average, maximum and minimum pH?

In contrast to the functions above, many other functions are performed on an element-

by-element basis:

> a = c(1, 2, 3, 4)

> sqrt(a)

Gives the output:

[1] 1.000000 1.414214 1.732051 2

When performing mathematical operations using a combination of vectors of the same

length, they are also performed on an element-by-element basis:

> b = c(4, 5, 6, 7)

> a+b

Produces:

[1] 5 7 9 11

9

When two vectors of unequal length are used, the shorter one is repeated to match the

length of the longer one.

> d = c(1,2)

> a*d

Gives the output

[1] 1 4 3 8

A single number is the same as a vector of length one, so therefore:

> 2*a

gives

[1] 2 4 6 8

What happens when the length of the longest vector is not an exact multiple of that of

the smaller one?

Accessing vector elements

Often it is necessary to access individual elements of a vector. For this, the name of the

vector is followed by two square brackets, with in between them the index number of

the element that you want to retrieve. So to obtain the third element of vector pH, you

write:

> pH[3]

It is not possible to go beyond the length of the vector, so pH[9] gives an error: NA,

which stands for Not Available, which is the code for missing data.

It is also possible to get multiple elements at a time, in which case the returned

value is, of course, a vector.

> thirty = round(runif(30,0,100) ,0)

> first.ten = thirty[1:10]

> every.second = thirty[seq(2,30,2)]

What did the runif function do?

10

Can you now make a vector that contains every fifth element?

Logic

Sometimes you may want to filter datasets based on certain conditions. For example you

may have two vectors, but only want to have the elements of the first vector for which

the corresponding elements in the second vector are above a certain threshold. For this,

logic operations are used.

> pH = c(4.3, 4.7, 4.2, 4.5, 7.0, 6.7, 7.2, 7.5)

> acid = pH < 7

> acid

Produces:

[1] TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE

So this is a vector of whether the condition is true or false. You can now use this vector

to access the elements of another vector, where only the ones that are TRUE here are

returned.

> num.species = c(12, 15, 11, 13, 21, 11, 19, 18)

> num.species[acid]

This produces:

[1] 12 15 11 13 11

Of course, this result can also be obtained at once:

> num.species[pH < 7]

Conditions can also be combined easily to get more powerful filtering (for a change,

type the following into a new, empty document rather than into the console and then

execute them):

soil = c("peat","peat","peat","peat","sand","sand","sand","sand")

pH = c(4.3, 4.7, 4.2, 4.5, 7.0, 6.7, 7.2, 7.5)

num.species = c(12, 15, 11, 13, 21, 11, 19, 18)

11

If you now want to obtain the average number of species from sand-grounds with a pH

of at least 7.0, you can write in one time:

> mean(num.species[soil == "sand" & pH >= 7.0])

There are two things to note here. First, to assess equality, == is used, and not = since the

latter was already used to assign values to variables. Errors in this distinction are very

common, even among experienced users, and often hard to find. Here an error-message

is produced when such a mistake is made, but this is certainly not always the case.

Second, the logical operator & is used to combine logical statements. Its complement

operator is |, which stands for a logical "or". So to get the numbers of species for all

samples with a pH lower than 4.5 and higher than 7.0, you write:

> num.species[pH < 4.5 | pH > 7.0]

Another useful operator is !=, which stands for "not equal to". So the above mean could

also have been obtained with:

> mean(num.species[soil != "peat" & pH >= 7.0])

How do you get the average pH for all plots with more than 15 species?

12

3. Arrays & matrices

Creating a matrix

If you have several variables measured for the same samples, it is possible to combine

these into a single data matrix, rather than to put all variables separately into vectors. So

if for the above samples you would not only have measured pH, and the number of

species, but also nitrogen levels:

nitrogen = c(12.5, 10.1, 9.8, 11.6, 13.0, 12.4, 11.6, 8.4)

Now you can combine these three variables into a single matrix, using the cbind

command, where the "c" stands for "column". Later you will learn how to immediately

read data matrices from files, to save you from typing over all your data in such a way.

eco.data = cbind(pH, num.species, nitrogen)

You now have a data matrix that contains your data. If you now print the matrix to the

console, you will see that the output is indeed nicely tabular and that R nicely used the

original variable names as the column names. You can now do several operations on

your matrix, for example:

> dim(eco.data)

> t(eco.data)

There are also other ways in which you can create a matrix (by the way, R calls them

arrays). Next to the above-used cbind function, there is also an rbind function which

will combine vectors as rows into a matrix. For example you can create an array and fill

them with data using the array command.

> empty.matrix = array(1, dim = c(5, 8))

Another method is to take a vector and give it dimensions. Note that arrays are not

limited to two dimensions:

> g = 1:56

> dim(g) = c(7,4,2)

Can you now create an array of 5 columns and 16 rows, filled with random numbers?

13

Array calculations

Performing mathematical operations with arrays works in the same way as for vectors,

as calculations are performed element-by-element (if you want to do matrix algebra,

you have to use a special syntax, which is beyond the scope of the introduction). When

a calculation is done using both an array and a vector, the elements of the vector will be

repeated to match the size of the matrix. In this case the calculations are first performed

by going over rows, then over columns.

create a matrix of 7 rows, 3 columns

a = 1:21

dim(a) = c(7,3)

now do some operations with it

a/4

sqrt(a)

a * 1:7

a * 1:3

Do you understand the output of the lower two examples? How do you multiply the first

column by one, the second column by two, and the third column by three?

Accessing array elements

Just like vector-elements, array elements can be accessed using square brackets, where

comma’s are used to separate elements from the different dimensions. For a two-

dimensional matrix the syntax is: array[row, column]. So to get the element at the

third row of the second column you type:

> eco.data[3, 2]

If the column or row index is left blank, all elements are returned. So to get all the data

for the third sample:

> eco.data[3,]

Also here logic operators can be used, so to get only the samples from peat:

> eco.data[soil == "peat",]

14

To get a vector with the means for all columns in the matrix, you could of course write:

> all.means = c(mean(eco.data[,1]), mean(eco.data[,2]),

mean(eco.data[,3]))

However, this quickly gets a nuisance if you have a matrix with a very large number of

columns. Here the apply function comes to the rescue, which can apply a specified

function to the rows of columns of an array. The use of this function is a bit more

complex than what you have seen before, as it requires three different arguments. The

first argument is the array on which you want to apply the function, the second is a

number specifying the margin, a 1 indicates that the function is applied over rows, and

2 indicates columns. The third argument is the function that is to be used. So to

calculate the mean for every column, you can simply write:

> all.means = apply(eco.data, 2, mean)

Now how can you quickly calculate the mean for only the samples from peat soils?

15

4. Factors, lists & data frames

Factors

Above, you used the vector "soil" to specify a classification of our data. While vectors

can be perfectly used for this, there is also a specialised data type available in R, called

factors. Factors are mostly used for formulating statistical models, e.g. for an ANOVA

or a regression analysis. The easiest way to create a vector is to call the factor function

on a vector.

> country= c("Ned", "Ned", "Bel", "Bel", "Ned", "Ned", "Bel", "Bel")

> country.fact = factor(country)

One difference between a normal vector and a factor (apart from the slight difference in

pronunciation) is the way their output is presented. When a factor is printed to the

console, it also prints the levels that it contains (go ahead and give it a try....). If you

only want to know the levels of a factor, you can use the levels function:

> levels(country.fact)

produces

[1] "Bel" "Ned"

You will undoubtedly have noticed that the levels of the factor are by default returned in

alphabetical order. A factor does not necessarily have to contain strings, it can also

contain numerical data, in which case the levels will be returned sorted from smallest to

largest. In some cases, this is not desired. For the above example, you might want to

always have the Netherlands first and Belgium last. In that case, you can use a so-called

ordered factor, which you can create using the ordered function.

Lists

A list is a collection of multiple items, which can be assessed by their names. These

items do not have to be of the same type or size. Lists are therefore often used by

complex functions to return different types of results.

> eco.combined = list(name="nature data", substrate=soil,

country=country.fact, data=eco.data)
16

Here name, substrate, country, and data are the names of the three elements that are

put into the list eco.combined. You can see that the data are of different types: name is a

single string, substrate a vector of strings, country a factor, and data an array. You

can now access the elements by their names:

> eco.combined$substrate

> eco.combined$name

If you are lazy, the names of the elements of a list can also be abbreviated to the least

number of characters necessary to distinguish them:

> eco.combined$s

> eco.combined$n

Finally, the elements of a list are also numbered automatically, so you can also access

them by number using a double pair of square brackets:

> eco.combined[[2]]

> eco.combined[[1]]

However, I generally advise against those latter two methods, because it decreases the

readability of your code. It is better to type a few more characters so that if you reread

your code a few months later, you still know what you did. If you ever need to know

which names were used for constructing a list, use:

> names(eco.combined)

Data frames

Data frames are multi-dimensional data sets, which are a bit of a cross between lists

and arrays. However, in an array, all columns had to contain the same type of data,

whereas a data frame can consists of a mixture of data types as long as they are all of

the same length. So you can have a data frame where some of the columns contain

strings or factors and others contain numerical data. Like a list, the variables can get a

name.

> eco.frame = data.frame(soil=factor(soil), country=country.fact,

pH=pH, num.species=num.species, nitrogen=nitrogen)

17

What happens when you don't supply names for the variables in your data frame?

As for lists, the variables (columns) can be retrieved using that name, or using the

double square brackets. However, it is also possible to use the same syntax as for arrays

to get to the individual elements. So the following are all equivalent:

> eco.frame$soil

> eco.frame[[1]]

> eco.frame[,1]

Of course, you can also get to the individual elements using the same notation as for

arrays. So the pH for the third sample can be obtained using:

> eco.frame[3,3]

Can you now also filter the matrix to only get the samples from Belgium? Can you

think of different ways to do this?

18

5. Working with files

The working directory

When accessing files, R has the concept of a working directory: the location in the file

system that is used as a reference point when looking for or creating files. The easiest

way to work with R is to make a folder with all your data in it, and then use that as a

working directory in R. You can change the working directory using the "Change

Working Directory..." command from the "Misc" menu. If you want to now the current

working directory, just look at the upper left corner of your console window.

Reading files

The most straightforward way of getting your data into R is via a tab-delimited text file,

for example if your data currently exists in Excel. In Excel, create a table with the

variables in columns and the observations in columns, and a single line with the column

headers, which should consist of only a single word. If you save that file to your

working directory, you can read it into R with the read.table function:

> eco.from.file = read.table("example eco data.txt", header=TRUE)

The function returns a data frame with the data in it, and it automatically guesses

whether a column contains numerical data or a factor. The read.table function has a

lot of possible arguments (see the corresponding Help file), that I will not discuss here.

If you want to know what the header argument does, just see what happens when you

leave it out (or set it to FALSE, which is the default).

Writing data

If you want to write data to disk, the easiest way is the write.table function. Like

read.table there are a lot of possible arguments, which can quite drastically change the

way the data is output. If you want to get your data back into Excel, the following

command is useful:

> write.table(eco.from.file, file="example R output.txt",

quote=FALSE, sep="\t")

19

6. Functions

Arguments

Up to now, you mostly have been using very simple functions, that take only a single

argument (sqrt, mean, var). However, in the last examples, you got a taste of more

flexible functions (read.table, write.table) that can take a lot of different

arguments. So now let's take a closer look at functions and how they work.

The arguments that can be given to a function can be roughly classified into two

classes: required and optional. Required arguments are those that are really needed to

perform the function. For example, the mean function has one required argument,

namely the data from which the mean is calculated. Optional arguments can be left out

(so not specified when the function is called), and in that case they will take a default

value. For example, above you saw that the read.table function has an optional

header argument that takes a default value of FALSE. You also saw that failing to

recognise that a function has some optional arguments can lead to errors, in this case in

reading the data correctly.

You can tell from the definition of a function which arguments are required and

which are optional. The function definition, its arguments, and their meaning can be

found in the help files. For example, the mean function actually has more than just a

single required argument, but also two optional arguments. The function is defined as:

mean(x, trim = 0, na.rm = FALSE, ...)

According to the Help files the arguments are defined as:

x An R object. Currently there are methods for numeric/logical vectors and data,

date-time, and time interval objects, and for data frames all of whose columns

have a method. Complex vectors are allowed for trim = 0, only.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before

the mean is computed. Values of trim outside that range are taken as the nearest

endpoint.

na.rm a logical value indicating whether NA values should be stripped before the

computation proceeds.

20

... further arguments passed to or from other methods.

Here, the arguments trim and na.rm are optional which you can tell because they both

have a default value defined (0 and FALSE, respectively). The argument x is required

because it does not have a default value defined. In this case, the ellipsis argument (...)

simply means that any further arguments provided by the user will be ignored. Knowing

this, how can you calculate the average electroconductivity (EC) for the

eco.from.file data?

Output

For more complex analyses, you might want more complex output than just a simple

vector with numbers. Therefore many functions produce an "object" as output, which

contain all the information about the performed analysis and the results, but sometimes

also other info such as how to plot the object. Like a list there are different elements can

be accessed by their name. As an example, you will do a PCA on the ecological data,

but before this you will first transform the "soil" data into a binary dummy variable, and

remove the country data. You will also first clean the workspace programmatically:

rm(list = ls())

eco.from.file = read.table("example eco data.txt", header=TRUE)

soil.dummy = rep(0, length(eco.from.file$soil))

soil.dummy[eco.from.file$soil =="sand"] = 1

data.for.pca = cbind(soil.dummy, eco.from.file[,3:6])

Now you perform the prcomp function. Unfortunately, you can’t use the 6th sample,

since that has missing data, and that is not allowed in a PCA:

eco.pca = prcomp(data.for.pca[-6,], scale=TRUE)

If you print the eco.pca object to the console, you will get an summary of the results,

but a more useful summary can be obtained using:

summary(eco.pca)

However, the object contains more information than just this. Unfortunately, it does not

return directly the percentages of explained variance, or even the eigenvalues, but rather

21

what it calls the "standard deviations". These are the square roots of the variances and

can be obtained using the name sdev. So to get the percentages of variance:

vars = eco.pca$sdev^2 #square the sdevs to get the variances

perc.vars = vars / (sum(vars))

How do you get the loadings of the PCA, and how do you get the axis scores? Tip: try

to find out which names can be used.

Writing your own functions

If you want to do something over and over again, it may be handy to write your own

function for it. A function is defined by giving it a name, followed by the word

function and then the arguments of the function between brackets. The expression,

the “body” of the function then follows in curly brackets behind the definition:

name <- function(arg_1, arg_2, ...){ expression }

However, before you start writing your own functions, it is useful to know something

about ways to loop and repeat calculations. Often when writing a function you will need

to repeat certain calculations a number of times or until a certain condition is met. One

important way to do this is using a "loop". The most common type of loop is the so-

called for-loop which is found in almost all programming languages. The basic syntax

is:

for(variable in vector) { expression }

The loop iterates over the elements of vector one by one, and at every step of the

iteration puts the corresponding value into variable. So to one-by-one print the values

of a vector of random numbers to the console:

rn = runif(10)

for(i in rn){

	 print(i)

}

22

Note that here we use the print function to output something to the console, since

simply typing the variable name does not always work within loops (and functions).

Another type of loop is the while-loop, here the expression is performed as long as a

certain condition is true.

while(condition) { expression }

So let's say we want to roll a virtual dice until we rolled a six (type this into a document

so you can run it several times).

eyes = 0

while(eyes != 6){

	 eyes = round(runif(1, 1, 6),0)

	 print(eyes)

}

Another way to develop your algorithm when you are writing your own function is

using if-else statements:

if(condition) { expression } else { expression }

Note that the else part of this statement is optional, so an if statement can be used to

only do something if the condition is true. As an example of the use of an if-else

statement, let's write a small function that tests whether a single number is odd:

is.odd <- function(x){

	 if(x %% 2 == 1){

	 	 return(TRUE)

	 } else {

	 	 return(FALSE)

	 }

}

The return command that is used here, gives the output of a function back to the point

where the function was called.

As a more complex example of a function, let's write a function to calculate the

harmonic mean, since R does not have a build-in function for this.

23

harm.mean <- function(x){

	 if(is.numeric(x) == FALSE){

	 	 return(warning("The data must be numerical"))

	 }

	 insum = 0

	 for(i in x){

	 	 insum = insum + 1/i

	 }

	 insum = length(x) / insum

	 return(insum)

}

After the function definition, a test is performed whether the data is actually suitable for

calculating a mean. Then a new variable called insum is declared and given a value of 0.

This variable is only valid within the scope of the function, so it will not be available

outside it. Then a for-loop is used to go over the elements of the vector one by one and

add its inverse to insum. The function then uses return to give the resulting value back.

Now give it a try:

> harm.mean(eco.from.file$num.species)

Though loops can be very handy, R is notoriously slow at performing them, so in

general it is better to use vector operations if this is possible. In the harm.mean function

I used a for-loop for pedagogical purposes. Can you think of a way to calculate the

harmonic mean without a loop?

24

7. Graphics

Simple plots

R has very extensive graphical capabilities, though these are not always very

straightforward to use. So doing graphics in R requires quite a bit of Googling and

reading Help-files, but the results can be rewarding, especially if you want to automate

the analysis of a lot of data.

The most basic type of graphic can be made with the plot command, which produces

what is also known as a XY-plot or a scatterplot.

> plot(eco.from.file$nitrogen,eco.from.file$EC)

The graph pops up in a new window (titled "Quartz" on Mac computers), but is very

crude and has incorrect titles. If you want to change any aspect of the graph, you will

have to change the command and execute it again (use the up-arrow to go back in

history and then modify the command). So to give the plot more appropriate titles:

> plot(eco.from.file$nitrogen,eco.from.file$EC, xlab="Nitrogen",

ylab="Electroconductivity", main="Nitrogen vs. EC")

You can change the colour of the symbols using the col argument, and the shape

through the pch argument. When the latter is given a value between 1 and 25, it will use

a variety of symbols, but what happens when you use values higher than 25 (try not

only 26 but also higher)?

> plot(eco.from.file$nitrogen,eco.from.file$EC, xlab="Nitrogen",

ylab="Electroconductivity", main="Nitrogen vs. EC", pch=19,

col="red")

To change the symbol size, use the cex argument, where you can give a value by which

the default size is multiplied. Likewise, the size of the axis scale can be changed using

cex.axis, and the label text using cex.lab:

> plot(eco.from.file$nitrogen,eco.from.file$EC, xlab="Nitrogen",

ylab="Electroconductivity", main="Nitrogen vs. EC", pch=19,

col="red", cex = 1.5, cex.axis=0.8, cex.lab=1.2)

25

When you want to add more points to this graph, you can call the points function. So if

you want to label the peat and sand soils differently, you have to split the data in two,

then plot the two groups separately:

sandy = eco.from.file[eco.from.file$soil == "sand",]

peaty = eco.from.file[eco.from.file$soil == "peat",]

plot(sandy$nitrogen,sandy$EC, xlab="Nitrogen",

ylab="Electroconductivity", main="Nitrogen vs. EC", pch=19,

col="red")

points(peaty$nitrogen,peaty$EC, col="blue")

Why are there only five points on the graph?

If you want to change the scale of the axes of a graph, you should use the ylim and

xlim arguments. Both take as a value a vector of length two. So to set the scale of the x-

axis from 0 to 100 you can add the argument xlim=c(0,100). Now can you fix the

problem of the disappearing points?

If you want to connect the dots by a line, you can use the lines function. So to plot the

cumulative percentage of variance explained by the PCA you did in the previous

chapter, you can do:

cumvar = cumsum(perc.vars)

plot(cumvar, xlab="Number of PCA axes", ylab="Total variance

explained", pch=15, col="goldenrod2", ylim=c(0,1))

lines(cumvar, col="goldenrod2")

As a part of their giant effort to make things more complicated than they are, the R team

decided that if you only want the line, and not the symbols, you still first have to call the

plot function, just without drawing any symbols.

plot(cumvar, xlab="Number of PCA axes", ylab="Total variance

explained", pch=NA, ylim=c(0,1))

lines(cumvar, col="goldenrod2", lwd = 2.0)

Hey, what did lwd do there?

26

Default plots

A different way to plot the explained variance of the PCA is as a barplot, for which you

could use the aptly titled barplot function:

> barplot(vars, main="eco.pca", ylab="Variances")

However, for many types of analyses, there is a specialised plotting function, so the

same result could have been obtained simply using:

> plot(eco.pca)

For more details about the PCA, there is also a specialised biplot function for PCA-

objects.

> biplot(eco.pca)

A more complex example

Now it's time for a bit more detailed example of two barplots with error-bars, to see

what you have all learned up till now. This example combines quite a few things that

you have already seen but also some new functions. You will start with the attach

function to make the names of the variables in eco.from.file directly available in the

workspace. This keeps us from typing all the names in full and making everything

unreadable. Instead of drawing the chart to a window, you will draw everything to a

newly created pdf-file. You also will see how to draw multiple plots next to each other.

Furthermore, there is no standard way to draw error bars in R, but you will see how you

can fake them by simply drawing flat-headed arrows on top of the bars.

read the file and attach variable names

eco.from.file = read.table("example eco data.txt", header=TRUE)

attach(eco.from.file)

#set the graphics device to pdf

pdf(file = "two barplots.pdf", onefile=TRUE, paper="a4r", width=10,

height=5)

#set that charts are drawn on 1 row and 2 columns

27

par(mfrow=c(1,2))

#count the number of observations per level

counts = table(soil)

#calculate mean and standard error for the number of species

mean.nu = tapply(num.species, soil, mean)

sd.nu = tapply(num.species, soil, sd)

sterr.nu = sd.nu / sqrt(counts)

#create a bar plot with error bars

bar.nu = barplot(mean.nu, ylim=c(0,25), ylab="Number of species",

col="powderblue", main="Number of species", font.lab=2)

arrows(bar.nu, mean.nu+sd.nu, bar.nu, mean.nu-sd.nu, angle=90,

code=3, length=0.3)

#calculate mean and standard error for the pH

mean.pH = tapply(pH, soil, mean)

sd.pH = tapply(pH, soil, sd)

sterr.pH = sd.pH / sqrt(counts)

#create a bar plot with error bars

bar.pH = barplot(mean.pH, ylim=c(0,10), ylab="pH", col="olivedrab3",

main = "pH", font.lab=2)

arrows(bar.pH, mean.pH+sd.pH, bar.pH, mean.pH-sd.pH, angle=90,

code=3, length=0.3)

#switch off the pdf graphics device

dev.off()

Other types of graphs

I am not planning to go into detail about all different types of graphs that are possible

with R, but here I will simply give some examples. If you want to explore a bit further,

just look at the Help-files (or Google) to see which parameters they take and what you

can all change about them.

> rand = rnorm(1000)

> hist(rand, freq=FALSE, ylim=c(0,0.4))

28

> curve(dnorm, add=TRUE, col="red")

> qqnorm(rand)

> qqline(rand, col="mediumorchid4", lwd="2")

> boxplot(rand)

> boxplot(pH~soil)

29

8. Analyses

A simple Anova

I am not experienced enough in doing Anova-type analyses with R to give a very

thorough introduction to them. If you really want to know these things there are many

textbooks about R that explain these things in greater detail. My main goal here is that

you can open such a textbook at the relevant chapter and more or less understand what

they explain, without having to read all the introductory chapters.

In the last graphical example, you may have noticed the tilde (~). In R, this

operator is used to define statistical models. It may be best understood with a small

example of an analysis of variance, where you test whether there is a difference in the

number of species between the peat samples and the sand samples:

> anova = aov(num.species~soil)

> summary(anova)

If you have only two levels, you can just as well do a t-test, with works very similarly:

> ttest = t.test(num.species~soil)

> summary(ttest)

So the left-hand side of the model formula indicates the dependent variable and the

r igh t -hand s ide the independen t va r i ab le . Why does the ana lys i s

aov(num.species~nitrogen) give such weird output?

Of course it is possible to make more complex models, for example a crossed

Anova can be performed by adding another independent variable:

> anova = aov(num.species~soil*country)

Or equivalently:

> anova = aov(num.species~soil+country+soil:country)

If you don't want to have the interaction effect:

> anova = aov(num.species~soil*country - soil:country)

Or equivalently:

30

> anova = aov(num.species~soil+country)

Like for the PCA above, the output of the aov function is very extensive. How can you

obtain the expected values under the Anova-model?

More on models

Regression analyses also use model formulae, but then the independent variables should

be a numerical variable and not a factor. So if you want to know whether the pH

significantly influences the number of species in a plot you can use the following

model.

> regress = lm(num.species~pH)

The lm function stands for "linear model" and is a very general function for least

squares based analyses. In fact, the aov function you used above internally uses lm and

just repackages the output to a friendlier format. If you want to do a multiple regression

with lm, you just have to extend the model. So if you want to add the nitrogen level as

an independent variable, you just write:

> regress = lm(num.species ~ pH + nitrogen)

Above you saw that using a continuous variable instead of a factor in an Anova gave

useless results. However, it is possible to use a combination of factors and continuous

variables. In that case the analysis becomes an Analysis of covariance (Ancova).

Possibly, the difference in number of species between the soil types may simply be

explained by the correlation with the pH. So to do an Ancova to correct for the effect of

the pH on the soil (and vice-versa):

> ancova = aov(num.species~soil+pH)

Well, now it's time to reformat all your own datafiles, read them into R and start

analysing them!

31

