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ABSTRACT 
The rate of decay of genetic variation is determined for randomly  mating  autotetraploid  populations 

of finite size,  and the  equilibrium  homozygosity  under  mutation  and  random  drift is calculated. It is 
shown that  heterozygosity is lost at a slower rate than in diploid  populations,  and  that  the  equilibrium 
heterozygosity with mutation  and  random  drift is higher  than for diploids.  Outcrossing  populations 
as well as populations  that  randomly self are analyzed. A method of comparing  genetic  variation 
between  autotetraploid  and  diploid  populations is proposed. Our treatment  suggests  that  the  “gametic 
homozygosity”  provides a unified  approach for comparing  genotypes  within a population as well as 
comparing  genetic  variation  between  populations with different levels  of  ploidy. 

I T is  well accepted that polyploidy is of major im- 
portance in the evolution of plants. This is re- 

flected by the large number of species of polyploid 
origin: estimates for  the  percentage of polyploid an- 
giosperms range  from 30% to 52% (STEBBINS 1950; 
GRANT  198 1) .  Two broad  categories of polyploids are 
recognized,  autopolyploid and allopolyploid. Al- 
though  these two types of polyploidy are different, 
they can be  considered  as  extremes in a  spectrum 
(STEBBINS 1947,  1950; CLAUSEN, KECK and HIESEY 
1945). 

Polyploid inheritance is complicated by the large 
number of modes of gamete  formation (MATHER 
1935,  1936). These modes are a  consequence of re- 
combination  between loci as well as of recombination 
between loci and  the  centromere,  and have been 
classified and extensively studied by FISHER (1947, 
1962). The population  genetic consequences of poly- 
somic inheritance  are considerable. An immediate 
casualty of an increase in ploidy is the familiar Hardy- 
Weinberg law. Hardy-Weinberg  proportions are at- 
tained only gradually in panmictic polyploid popula- 
tions (HALDANE  1930; BENNETT 1953,  1954), and, 
unless there is no double  reduction,  equilibrium  fre- 
quencies of zygotes are  not  proportional  to  the  cor- 
responding  product of allele frequencies (LI 1955; 
SEYFFERT  1960; ELANDT-JOHNSON 1967; BENNETT 
1968). Consideration of linkage in polysomic inherit- 
ance  adds  to  the complexity (FISHER 1943,  1947; 
GEIRINGER  1949a,b,c; BENNETT 1953; CROW 1954; 
GRIFFING  1957). Inasmuch  as  a majority of naturally 
occurring polysomic populations are not strictly 
panmictic (STEBBINS 1980), as well as many cultivated 
polysomic crop plants, the effect of the  mating system 
on  the evolution of polyploids is important.  This effect 
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has been relatively well studied, especially for self- 
fertilization and  regular systems of inbreeding 
(KEMPTHORNE 1957; SEYFFERT 1959; BENNETT 1968, 
1976; MCCONNELL and FYFE 1975). KEMPTHORNE 
(1955,  1957) has calculated the correlation between 
relatives for  autotetraploids  and  autohexaploids,  and 
the probabilistic methods of MAL~COT (1966) for  the 
analysis of inbreeding have been  extended to polysom- 
ics (GALLAIS 1967,  1969; GUY 1970,  1972; GUY and 
GRENIER  1967). This  theory has been  applied to study 
inbreeding  depression in  polysomic crop plants (e .g . ,  
BUSBICE and WILSIE 1966; RICE and DUDLEY 1974). 
To a limited extent  the effect of selection in  polysomic 
populations has been investigated (WRIGHT 1938; 
PARSONS 1959), as well as the quantitative genetics of 
autotetraploids (LI 1957; KEMPTHORNE 1957; BUS- 
BICE and WILSIE 1966; KILLICK 1971). 

Whereas allopolyploidy is known to be widespread 
in many plant  groups,  including  angiosperms  and 
pteridophytes,  autopolyploid speciation has generally 
been  considered  to be  rare  and of little evolutionary 
importance (CRAWFORD  1985; LEVIN  1983; LEWIS 
1980; SOLTIS and RIESEBERG 1986; STEBBINS 1980). 
As a  result of this long-standing view, relatively few 
studies  have  addressed the practical or theoretical 
problems  regarding autopolyploid speciation, al- 
though  there  are noteworthy  exceptions (e.g., FOWLER 
and LEVIN 1984). The genetic and ecological attri- 
butes of naturally  occurring autopolyploids and  their 
presumed diploid progenitors have rarely  been inves- 
tigated in detail. 

Recent studies indicate,  however, that autopoly- 
ploid speciation is more  common and evolutionarily 
important  than  heretofore  appreciated (CRAWFORD 
1985; EHRENDORFER 1980;  LEVIN  1983;  SAMUEL, PIN- 
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SKER and EHRENDORFER 1990; SOLTIS and RIESEBERC 
1986; SOLTIS and SOLTIS 1989a,b; RIESEBERC and 
DOYLE 1989). Autotetraploids, at least  newly formed 
ones, are characterized by tetrasomic inheritance 
(BARBER 1970; HALDANE 1930, MULLER 1914; STEB- 
BINS 1947,  1950) and, as described above, present 
special theoretical and practical  complications for both 
modeling and data analysis;  diploids and allopoly- 
ploids are simpler  in this regard, both of  which exhibit 
disomic inheritance. Although much population ge- 
netics theory has  been  developed for autopolyploid 
evolution, many  questions remain unanswered. In par- 
ticular, relatively little is known about random drift 
in finite polysomic populations (ROWE 1986) and  the 
equilibrium levels  of genetic variation in finite popu- 
lations  with mutation has not been characterized. 

By the very nature of  polysomy,  we expect that 
greater heterozygosity  would  be maintained in an 
autotetraploid population than in a diploid population 
of the same  size. This  argument has  been  invoked to 
explain the evolutionary success (or potential success) 
of  autopolyploids in nature (BARBER 1970; HALDANE 
1930; MULLER 1914; STEBBINS 1947,  1950,  1980). 
Electrophoretic investigations  of autopolyploid specia- 
tion  suggest that heterozygosity is significantly greater 
in populations of autopolyploids than in  those  of their 
diploid progenitors (SOLTIS and RIESEBERC 1986). It 
is unclear, however,  exactly how comparisons of het- 
erozygosity  should  be  made  between  polyploid and 
diploid populations and how tetrasomic inheritance 
intrinsically  affects the level  of genetic variation. In 
this paper we propose a measure of genetic variation 
in finite autotetraploid populations, describe its evo- 
lution, and discuss a means  of comparing such popu- 
lations to their diploid counterparts. 

THE MODEL 

No mutation: Consider an  autosomal  locus in an 
autotetraploid population of N individuals. For sim- 
plicity we will ignore double reduction and  therefore 
suppose that  the probability  of segregating homoal- 
lelic  gametes is zero (CROW and KIMURA 1970). We 
assume that generations are discrete and nonoverlap- 
ping and that neither natural selection, mutation, 
migration nor any other systematic evolutionary force 
influences the evolution of the population. Mating will 
be at random and according to the following  scheme: 
each generation every adult produces an  identical and 
very large number of gametes, from the totality  of 
which N pairs are sampled at random to form the N 
individuals  of the succeeding generation; we posit that 
inheritance is tetrasomic. Genetic variation in the 
population will be characterized in generation t ( t  = 
0,  1 ,  2, . . .) by  two probabilities of identity, denoted 
fi and gl.  We refer to ft as the gametic homozygosity 
(DEMARLY 1963), defined to be the probability that a 

randomly  chosen gamete from a randomly  selected 
individual  of generation t is homozygous at the given 
locus;  since adults are autotetraploid, every gamete 
has  two  copies  of each locus. The probability gl rep- 
resents the chance that  a pair of homologous chro- 
mosomes, each randomly  selected from randomly  cho- 
sen  gametes produced by distinct  individuals in 
generation t ,  are identical  in state at the given  locus. 

Two special  cases will be distinguished according to 
whether or not selfing is allowed to occur. 

No se&ng: In  order to analyze the behavior offi  and 
gl, we will derive the recursion relations that relate 
them between  successive generations. To that  end, we 
note  that it is with  probability 1/3 that the pair  of 
chromosomes containing a given  locus  in a randomly 
selected gamete from an individual  were paired in a 
gamete in the previous generation. With  chance 2/3, 
these  two  chromosomes  in our selected gamete were 
derived from chromosomes contained in separate ga- 
metes  of the previous generation; since  selfing is not 
allowed, these two gametes must  have  been derived 
from distinct  individuals of the previous generation. 
This observation leads  immediately to our first equa- 
tion (KEMPTHORNE 1957) 

1 2  
3 & + I  = -5 + 3 gt. 

If we  now consider two  homologous  genes drawn at 
random in generation t + 1 from gametes produced 
by distinct  individuals, we readily  see that it is  with 
probability 1/N that these  two  genes  were independ- 
ently derived from the same  individual of generation 
t ,  and with the complementary chance 1 - 1/N they 
were derived from distinct  individuals. In the former 
instance the probability of identity of the two  genes is 
easily  shown to be (KEMPTHORNE 1957): 

1 3  
4 4  - + -fi, 

and in the  latter situation the probability  of  identity 
is simply gl.  Consequently, 

gt+1 = - ( 1  + 3fi) + (1  - $ 5 ;  (2) 
1 

4N 

combined with ( 1 )  this  gives the desired recursions. 
The system will be analyzed in terms of the variables 

h, = 1 -fi (the gametic heterozygosity) and kt = 1 - gl.  
This results in the homogeneous system 

1 2 
3 h,+l = - h, + 5 k l ,  

3 
kt+l = - 4N h, + (1  - $) I t l ,  
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which is conveniently represented in the  matrix  form 

1 

Vt+l  = 3 (; where 

A straightforward calculation reveals that  the largest 
eigenvalue X, of the  matrix  appearing in ( 3 )  is 

A simple expansion elucidates the asymptotic behavior 
of X, for  large  population size: 

1 
X,= 1" 

4N 
+O(N-') as N + w .  

Thus  the gametic heterozygosity decays to 0 as gen- 
erations  advance, and  the asymptotic rate of decay of 
gametic heterozygosity is approximately 1 - 1 / ( 4 N )  
for large N .  This is slower than  the  corresponding 
rate of decay of heterozygosity in diploid populations, 
1 - 1 / ( 2 N ) .  As we expect, heterozygosity is lost less 
rapidly in autotetraploid  populations,  although  the 
population will still eventually become  monomorphic. 

Random  seljing  allowed: If selfing occurs the  recur- 
sion equations must be modified to  account  for  the 
possibility that  homologous  chromosomes  from  an 
individual of generation t + 1, originating  from dis- 
tinct  gametes of the previous  generation,  are in fact 
descended  from the same individual of generation t .  
Using similar reasoning as before we now obtain 

f ' + ' - 6 N  -J-+(L+L)+t( 3 2N 1 -$, ( 5 )  

as the  pertinent  recursion  equations. 
Changing variables as before now  gives 

from which we determine  the asymptotic rate of decay 
X, to be 

Because the leading  eigenvalue of an  irreducible  non- 
negative matrix is bounded below by the least and 
above by the greatest row sum (GANTMACHER 1960),  

we infer  from ( 3 )  and  the matrix following ( 6 )  that 

1 1  1 3  
N 2N N 4N 

1 - -+"<X,<l  --+-<X,<l 

Thus, X, < X, for all N 2 2:  as expected,  genetic 
variation ultimately decays more slowly if the  popu- 
lation does  not self. 

Expanding X ,  to first order in N-' leads to  the same 
approximation  for  large  population sizes as previously 
obtained  for X,: 

1 
4N X s - l - -  as N + w .  

The difference  between  the  rates of decay of gametic 
heterozygosity for selfing and outcrossing  populations 
should therefore be negligible in large populations. 
This is not  surprising because the probability of a 
random selfing declines to 0 as N 4 00. For small 
populations though, this difference can be numerically 
significant: with N = 2 we obtain X ,  = 0 .903  and X, = 
0.926.  

Mutation  and  random  drift: We will hereafter sup- 
pose that mutation  occurs each generation  at  the  rate 
u per  gene,  and  that all mutants  are novel allelic forms 
as per  the  standard infinite-alleles assumption. It is 
straightforward  to see that  the  equilibrium probabili- 
ties of identity f and i satisfy the linear  equations 

if selfing is not  permitted. With selfing allowed, the 
corresponding  equations are 

Solving these  equations yields the  equilibrium gametic 
homozygositiesJb a n d 3  for  the nonselfing and selfing 
models, respectively: 

U 2  

fo = 4 6  - 5 u )  + 2( 1 - u)(3 - u)N ' (8) 

(9)  fs = 
V 

~ ( 3  - 2 ~ )  + 2(1 - u)(3 - u)N ' 

where we have  defined v = (1 - u)'. The u in the 
numerator of (9)  is not  squared. 

A simple calculation now  shows that f, <$ for N I 
2 and 0 < u < 1 ;  thus there is more homozygosity at 
equilibrium if selfing occurs  than if it does not, as we 
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2 -  

1 + 4Nu 

1 + 8Nu 

0 1 2 3 4 5 
Nu 

FIGURE 1.-Comparison of the equilibrium homozygosity in a 
diploid population to  the gametic homozygosity in an  autotetraploid 
population as a function of Nu (bottom two curves). The curve 
above the dashed line is the ratio of the diploid homozygosity to 
the gametic homozygosity  in the tetraploid population. As is clear 
from the  figure, there is  less homozygosity at equilibrium in the 
tetraploid population. The upper  curve  approaches 2 asymptotically 
for large Nu. 

expect. Furthermore, if N >> 1 and Nu2 << 1 we 
determine  from (8) and  (9)  that fo and fs are asymp- 
totically equal: 

fo and fs = 1 
1 + 8Nu 

f. 

Since the conditions of the  approximation are often 
likely to hold, the difference in equilibrium gametic 
homozygosity between selfing and non-selfing popu- 
lations would not generally be  apparent. 

It is important  to  observe  that  the  equilibrium ga- 
metic homozygosity is smaller for  an  autotetraploid 
population  than the equilibrium homozygosity in a 
diploid population of the same size (which equals [ 1 + 
 NU]"). This difference  can  be  substantial; in fact if 
Nu is large the equilibrium  gametic homozygosity in 
an  autotetraploid  population is approximately  one- 
half that of the homozygosity in a  correspondingly 
large diploid population. This is illustrated in Figure 
1, where the  ratio of the tetraploid to  the diploid 
homozygosity at equilibrium is plotted as a  function 
of Nu. As the  figure reveals, if Nu is relatively small 
compared  to  1  then  the  tetraploid  and diploid popu- 
lations have comparable  amounts of variation, 
whereas when Nu exceeds 1,  there is considerably 
more variation in the tetraploid  population. 

Finally, it is useful to recast ( 1  0) for  the  equilibrium 
homozygosity f in the  form 

1  1 '= 1 + 8Nu 1 + 2n2' 

where n2 = 4Nu is the expected number of new 
'mutants arising each generation.  For diploids, the 
equilibrium homozygosity is 

-- - 

1 1 
1 + 4Nu 1 + 2n1 ' 

-- - 

where nl = 2Nu is the expected  number of  new 
mutants  per  generation  for diploids. From this per- 
spective, we see that  the  equilibrium homozygosity 
takes the same form  for  both  tetraploids  and diploids. 
This invites us to conjecture  that  the  equilibrium 
gametic homozygosity for  an  auto 2k-ploid population 
will be  (approximately) 

Zk) - 1 ' - 1 + 4kNu ' k = l , 2 , 3  . . . ,  

for N >> 1, Nu2 << 1 ; this generalization is justified in 
APPENDIX B. 

It is well known for diploids (EWENS and GILLESPIE 
1974)  that  the "homozygosity" estimator  obtained by 
solving the previous  equation  for N u  is biased. Better 
estimates are obtained  from  more sophisticated sam- 
pling  theory (Ewens 1979). We have not  extended 
this theory  to polysomics, and will rely on  (12) in the 
application that follows below. 

Gametic  homozygosity  and  genotypic  frequencies: 
As  is clear  from its definition, the gametic homozy- 
gosity is not  equal to  the homozygosity of the  adult 
population  but is instead a  function of the frequencies 
of the several possible tetraploid genotypes. To un- 
derstand  the  connection  between f and  the genotypic 
frequencies in a given generation, we will suppose that 
there  are alleles AI, AZ, . . . at  the given locus  with 
respective frequencies P I ,  $2, . . . in the  population. 
Assume that  the  population is at equilibrium and  not 
too small; from this assumption together with our 
stipulation that  double  reduction  does  not  occur we 
infer  that  genotypes are approximately in Hardy- 
Weinberg  proportions. We then  define the following 
quantities: 

(The parenthetical lists  of symbols represent  generic 
genotypes involved in the  corresponding  summation: 
for  example, 7rz,1,1 (e, e, 8, 63) is the total frequency 
of heterozygotes  that have exactly three distinct al- 
leles, 7r4 (e, e, e, e) is the total  frequency of homo- 
zygotes, etc. 

Using these  definitions and assumptions, it is easy 
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to show that  the gametic homozygosity is given by 

1 1 1 
2  3  6 

f= 1 * * 4 + - .  r 3 , 1  +-.  r 2 , 2 + -  r Z , l , l  

+ 0 * ~ l , l , l , l  (12) 

1  1  1 
2  3  6 = r 4 + - r 3 , 1  +-rZ,Z+-r2,1,1. 

Thus, if the distribution of genotypic  frequencies is 
known or can be inferred, (1  2) can  be used to estimate 
the gametic homozygosity of the population. As has 
been previously noted,  the gametic heterozygosity is 
insufficient to completely characterize the genetic 
structure of a panmictic tetraploid  population (GUY 
1972; GLENDINNINC 1989). We remark, however, that 
our  aim is to  determine  the effect of polyploidy on 
observed  genetic  variation, whence our focus on iden- 
tity in state. Thus, we have not  developed our theory 
using the  more complicated identity by descent  for- 
mulae  introduced by GALLAIS (1967) for tetraploids. 

We suggest that f is an  appropriate statistic for 
comparing  genetic variation in autotetraploid  popu- 
lations with diploid populations of comparable size. 
This notion is reinforced when we realize that  the 
gametic homozygosity of an  autotetraploid  population 
and  the homozygosity of a  diploid  population each 
define  the probability that  a  pair of homologous 
genes,  randomly  drawn  without  replacement  from  a 
randomly selected individual, are identical in state at 
the given locus. The simple distinctions between ho- 
mozygote and heterozygote that prevail with diploids 
are not  adequate  for  autotetraploids:  not all hetero- 
zygotes are created  equal. Some are  “more heterozy- 
gous” than  others;  alternately, some are  more homo- 
zygous than  others. The gametic homozygosity ac- 
counts for this natural  heterogeneity of autotetraploid 
genotypes, as expressed in the above weighted 
average. 

Our calculations suggest that we may order geno- 
types within a  population  according to  the probability 
that  a  randomly chosen homologous  pair of genes are 
identical in state.  For  a given genotype G let this 
probability be 4(G). Define the symbol “<” to mean 
“is  less homozygous than”  and stipulate  that G I  < G2 
if, and only if, $(GI) < 4(G2), for two genotypes G1 
and G2. With this terminology, we decompose the 
collection of genotypes into equivalence classes gl, 
5 2 ,  . . ., according to  the value of 4. In other words, 
two distinct genotypes G I  and G2 are in the same 
equivalence class if, and only if, 4(G1) = 4(G2). Hence 
the collection of genotypes G I ,  G2,  . . . is partially 
ordered  under (4, <) and  the set of equivalence classes 
of genotypes (.Yl, 5 2 ,  , . . 1 is totally ordered  under (4, 
<), where we define @(Si) = $(GJ for any gj E Zi. 

With this characterization the gametic homozygosity 
for  the population becomes 

f = C 4(gi)r(gi)> (1 3) 
S,€g 

where 27 = Ui .Yi  is the set of all equivalence classes 
and ..(Si) is the total  frequency of genotypes in  class 
Fi. It  should  be  noted  that our treatment will apply to 
any auto-2k-ploid population in the absence of double 
reduction, k = 1, 2, 3, . . ., although  higher ploidy 
levels have diminished biological relevance. 

In particular,  a diploid population has at most two 
equivalence classes  of genotypes under (4, <): the 
homozygote  genotypes [Z1, 4(Fl) = 13 and  the  heter- 
ozygotes [.Y2, ~ ( S Z )  = 01. Clearly the gametic homo- 
zygosity  satisfies f = r(.Y1) and equals the usual ho- 
mozygosity  of the population.  For  an  autotetraploid 
population there  are  at most five equivalence classes 
TI, F2, 5 3 ,  .Y4, F 5  corresponding respectively to  the 
five classes  of genotypes  depicted  from  top-to-bottom 
in (1 1). Equation 12 is now seen to differ  from (13) 
merely in notation;  the  procedure  to  describe  popu- 
lations with even higher levels  of autopolyploidy is 
completely analogous.  It  should  be  noted  that,  for 
diploids and  autotetraploids,  the  “natural”  ordering 
of genotypes  according to  the  number of distinct 
alleles present  partitions the genotypes exactly as does 
(4, <). This intuitive  approach  does  not, however, 
agree with the  ordering based on gametic homozy- 
gosity for  higher ploidy levels and, in any event,  does 
not suggest a means of quantifying the relative con- 
tributions of different  genotypes to  the overall genetic 
variation. Our  treatment suggests that  the gametic 
homozygosity offers  a unified approach to comparing 
genotypes within a  population as well as comparing 
genetic variation between populations with different 
degrees of ploidy. 

Effective number of alleles: In analogy with the 
diploid situation, define the effective number of alleles 
n, for  an  autotetraploid  population with gametic ho- 
mozygosityfas that  number of equally frequent alleles 
giving rise to this same value off. Consider an  auto- 
tetraploid  population at equilibrium with n ? 1 equally 
frequent alleles. Put pi = l/n, i = 1 ,. . ., n in (1  1) to 
infer,  after some elementary  combinatorics, 

6(1) 4n(n - 1) 
n4  ’ r 2 . 2  = - 

n 
r3.1 = , r4=- n4  n4 ’ 

When  these expressions are inserted  into (12), we 
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determine  that f = l/n and hence  from (1 0) identify 
the effective number of alleles as 

- 1  
ne = 1 + 8Nu i .e. ,  f = - 

exactly as we would have wished. We conjecture  that 
the effective number of alleles for 2k-ploid popula- 
tions is n:“) = 1 + 4KNu, so = [ n ~ z k ) ] - ’ .  

ne 

APPLICATION 

Recent studies have shown that  the diploid angios- 
perm Tolmiea menriesii has an average heterozygosity 
of 7% while individuals in related  autotetraploid  pop- 
ulations are heterozygous at 24% of their loci  (SOLTIS 
and SOLTIS 1989a)  It is natural  to  inquire  whether  the 
genetic system alone  accounts for  the increased levels 
of genetic variation observed in these  autotetraploid 
populations. The theory  developed  above provides a 
means to address this question. 

We proceed as follows. First, Nu can be  estimated 
from  the observed heterozygosity in the diploid pop- 
ulations and  the theoretical  expectation that this het- 
erozygosity will approximately  equal 4Nu/( 1 + 4Nu). 
This estimate of Nu is then used in (10) to predict the 
expected gametic homozygosity in the  autotetraploid 
population. We have of course assumed that  the dip- 
loid and  autotetraploid  populations  both  experience 
the same forces of random  drift  and  mutation. 

Using data  from  15 loci and  15 local diploid popu- 
lations this procedure yields a  theoretical  gametic 
homozygosity of 0.87 with a 95% confidence  interval 
of [0.78, 0.981 for  the  autotetraploid  populations. 
Applying (1 2) to  the tetraploid data, we have directly 
estimated  the  average  gametic homozygosity (see 
(Al)) for  7 local autotetraploid  populations  to  be 0.88 
(kO.09, 95% (2.1.). Clearly the genetic system alone 
can satisfactorily account  for the large increase in 
genetic variation of these  autotetraploid  populations. 
The details of our statistical analysis is presented in 
the APPENDIX A. 

We note  that our calculations do not necessarily 
support  the  contention  that  the  observed  genetic var- 
iation is neutral.  Indeed models of natural selection 
can predict heterozygosity in diploid populations com- 
parable to  neutral models (GILLESPIE 1979).  It is  likely 
that  an  autotetraploid version of GILLESPIE’S model 
would predict an increase in standing  genetic variation 
similar to  our  neutral model. 

DISCUSSION 

Recent studies have indicated  that  tetrasomic  inher- 
itance may be  much more common in plants than 
previously realized. As such it is important  to  under- 
stand how differences in the genetic systems of plants 

can influence the  amount of genetic variation main- 
tained in populations. We have shown that  the so 
called “gametic homozygosity” is a  natural  measure of 
genetic variation for  populations of any degree of 
ploidy. The gametic homozygosity appropriately 
weighs the  contributions of the various kinds of gen- 
otypes to genetic variation within populations, and 
provides  a unified approach  for  comparing genetic 
variation between  populations of different ploidy. 

We have computed  the  equilibrium gametic homo- 
zygosity under mutation and  random  drift  for plants 
that  randomly self and  for those that do not self. The 
theoretical results reveal that  the  equilibrium gametic 
homozygosity is lower in autotetraploid populations 
than in diploid populations of equivalent size. This 
reduction in homozygosity is entirely due  to  the dif- 
ference in the genetic systems between diploid and 
autotetraploids.  It was thus possible to  demonstrate 
that  the  apparent increase in heterozygosity observed 
in autotetraploid varieties of the diploid angiosperm 
T. menriesii is entirely consistent with our expectations 
based on  tetrasomic  inheritance. 
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APPENDIX A 

Estimation of$ Let  the  gametic nomozygosity at 
locus I in population i befi,i. A sample will consist of 
an  enumeration of the  number of  genotypes in the 
five exhaustive classes according  to (1  1). If we let #(e, 
0, 8, @) represent  the  number of (e, 0, 8, @) geno- 
types in the sample, with a similar notation  for  the 
other categories of genotypes, then we can estimate 
the  frequencies in (1 1) using the sample genotypic 

@)/N,  etc,  where N is the total number of  genotypes 
observed at locus I in population i .  The estimate&,i is 

frequencies m,1 ,1 ,1  = (e, 0, 8, @)/A’, T Z , ~ , ~  = (e,  e, 8, 
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then  obtained by replacing the subscripted ''d' fre- 
quencies of ( 1  2) with the sample frequencies. If there 
are a total of nL loci sampled in nK populations,  then 
the mean gametic homozygosity for  population i is 
estimated by, 

and hence the estimate of the mean gametic  homo- 
zygosity over all populations is 

Variance o f j  The variance off,, may be  partitioned 
into between- and within-locus contributions as fol- 
lows: 

The estimated variance for  population i is simply 
nL 

~ a r ( f . , , )  = (J,i 2 f.,i)'/nL; 
1- 1 

(nL - 1)  should replace nL in the  denominator if an 
unbiased estimate is preferred. We now estimate the 
within-locus variance as the mean  over loci  of the 
variance due  to multinomial sampling at each locus. 
In our notation this variance for  a single locus is 

The calculation of Var(f., .) is complicated by the 
fact that  the f . , i  are not  independent.  This lack  of 
independence arises from  the  common  practice of 
sampling the same loci  in  all populations  examined. 
Thus, loci are  not sampled at random which implies 
that  the f.,i are likely to be positively correlated. A 
similar effect has been  described previously for ge- 
netic distance statistics (MUELLER and AYALA  1982) 

and applies also to heterozygosites averaged  over  pop- 
ulations. Thus 

nK-1 nK 

i=l  j = i + l  I /  
where 

From the  data analyzed in this study we note  the 
following. For samples of 15 loci and  about 30 indi- 
viduals the  intralocus  contribution to variance is one 
or two orders of magnitude less than  the between- 
locus contribution.  This is a  consequence of the loci 
generally falling in two classes: monomorphic or 
highly polymorphic. The best strategy for  obtaining 
accurate estimates of gametic homozygosity is, there- 
fore,  to sample as many loci as possible. Similar rec- 
ommendations apply to estimating heterozygosity in 
diploid populations (NEI and ROYCHOUDHURY 1974). 

The correlation of heterozygosity between local 
diploid populations and of gametic homozygosity in 
autotetraploid  populations is very high. Thus,  about 
63% of the variance of the mean heterozygosity of 
diploid Tolmiea is due  to  the correlation between 
local populations. Nearly 97% of the variance in mean 
gametic homozygosity in tetraploid  Tolmeia is due  to 
these  correlations. 

APPENDIX B 

In this appendix we supply a  justification  for the 
generalization to higher ploidy levels of the equilib- 
rium  approximations given in (10). Consider  a 2k- 
ploid population, k = 1 ,  2, . . . with mutation at  the 
constant rate u under  the usual assumptions of the 
infinite alleles model. In  the absence of selfing, we 
adapt  the  argument of KEMPTHORNE (1957, p. 91) to 
obtain the recursion  relations  for the probabilities of 
identityf(") and g("): 

With v ( 1  - u ) ~  we identify the equilibrium  proba- 
bility  of identity as 

j ( 2 W  = 

.2 

2N(1 -v)[2k- 1 - (k-  l)v]+v[2(2k- 1)+(3-4k)~]  
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which, when N >> 1 ,  kNu2 << 1 ,  gives the  approxima- gosity is, to  first  order in Xi, 
tion 

This generalizes the  approximations  appearing in (4) 
and (7). 

The'  approximations  for f(") and Ahzh) agree with 
This approximation  generalizes (10). In  the absence the  corresponding  quantities  for  random selfing, al- 
of  mutation, we deduce  from  the recursion  equations though  the recursion  equations and exact expressions 
that  the asymptotic rate of convergence  to homozy- must be suitably modified. 


