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ABSTRACT
Population structure parameters commonly used for diploid species are reexamined for the particular

case of tetrasomic inheritance (autotetraploid species). Recurrence equations that describe the evolution
of identity probabilities for neutral genes in an “island model” of population structure are derived assuming
tetrasomic inheritance. The expected equilibrium value of FST is computed. In contrast to diploids, the
correlation of genes between individuals within populations with respect to genes between populations
(FST) may vary among loci due to the particular segregation patterns expected under tetrasomic inheritance
and is consequently inappropriate for estimating demographic parameters in such populations. We thus
define a new parameter (r)and derive its relationship withNm. This relationship is shown to be independent
from both the selfing rate and the proportion of double reduction. Finally, the statistical procedure
required to evaluate these parameters using data on gene frequencies distribution among autotetraploid
populations is developed.

DUE to its frequent occurrence among angiosperm pair during meiosis. Multivalents leading to polysomic
inheritance are formed. This does not necessarily leadspecies (from 30 to 50%; Stebbins 1971; Grant

1981), polyploidy is now recognized as an important to random assortments of homologous chromosomes
into gametes; two sister chromatids may also segregatestep in the evolutionary diversification of flowering

plants (Lewis 1980; Levin 1983; Stebbins 1985; into the same gamete (Figure 1). This phenomenon,
known as “double reduction,” is specific to autopoly-Thompson and Lumaret 1992; Soltis and Soltis

1993; Bretagnolle and Thompson 1995, 1996; Petit ploids. It increases the production of homozygous ga-
metes as compared to what is expected under randomet al. 1996, 1997). Polyploid species are commonly classi-

fied in two major types according to their presumed chromosome segregation and is thus likely to alter many
basic expectations of population genetics (Bever andorigin: allopolyploids are thought to result from hybrid-

ization between different taxa and subsequent chromo- Felber 1992). Because the frequency of double reduc-
tion depends on the occurrence of crossovers betweensome doubling, while autopolyploids presumably stem

from the chromosome doubling of the same genome, the centromere and the locus under consideration (Fig-
ure 1), segregation patterns are expected to vary amongprimarily by fusion of unreduced gametes (Bever and

Felber 1992; Bretagnolle and Thompson 1995). Au- loci, obscuring predictions regarding genetic aspects of
totetraploidy was originally thought to be rare and mal- autopolyploids.
adaptive as compared to allopolyploidy. However, a Probably because of the agronomic significance of
growing number of studies using genetic information in polyploid species, the consequences of polysomic inher-
addition to cytological and morphological traits confirm itance and double reduction have been investigated,
that autopolyploids are more common and of greater especially for self-fertilization and regular systems of
evolutionary importance than originally appreciated inbreeding (Haldane 1930; Demarly 1963; Bennett

(Levin 1983; Crawford 1985; Rieseberg and Doyle 1968; Gallais 1990). In contrast, few investigations have
1989; Soltis and Soltis 1989). dealt with the amount and patterns of genetic variation

Due to the addition of divergent genomes, inheritance among naturally occurring autopolyploid populations,
in allopolyploids is disomic; i.e., pairing behavior during and theoretical models incorporating population struc-
meiosis is similar to that of nonhomologous pairs of ture and estimation procedures are still lacking for tet-
chromosomes in diploids. In contrast, segregation pat- rasomic inheritance (Glendinning 1989; Bever and
terns in autopolyploids are much more complex be- Felber 1992 for review; Moody et al. 1993).
cause more than two homologous chromosomes can For diploids, the distribution of genetic diversity

within and among natural populations is commonly ana-
lyzed using theoretical models of population structure,
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Figure 1.—Possible segregation patterns
of a locus in an autotetraploid individual
following the formation of a quadrivalent.
Type I describes the segregation patterns
expected when there is no crossover be-
tween the centromere and the locus. The
first division is then reductional. When a
crossover occurs between the centromere
and the locus (Types II and III), the first
division can be either equational (Type II)
or reductional (Type III). Under Type III,
the second division may then lead todouble
reduction. In the present case, gametes ii
and jj have undergone double reduction.

as FST (Wright 1951), can be estimated using isozyme of tetrasomic inheritance; the case of the island model
is given here as an illustration. Equilibrium values foror DNA-based marker diversity and can be compared

to expectations under specific models such as Wright’s traditional F-statistics parameters are derived. Because
the proportion of double reduction may vary over loci,island or isolation by distance models (Slatkin and

Barton 1989; Rousset 1997). The relationships be- we define an additional function of probabilities of gene
identity. This parameter seems appropriate to analyzetween estimates and expectations can then be used to

quantify gene flow between the studied units or even population structure in autotetraploids, because its rela-
tionship with the migration rate and the population sizeto understand how ecological and life history traits may

influence the distribution of genetic variation within is shown to be independent from both the selfing rate
and the proportion of double reduction. Finally, follow-and among populations (see, for example, Loveless

and Hamrick 1984; Hamrick and Godt 1990). How- ing Weir and Cockerham (1984), we define estimators
for the different parameters using the analysis of vari-ever, models of population structure as well as estima-

tion procedures have been almost exclusively devoted ance framework.
to diploid populations (see, however, Wright 1938).

The aim of this article is to develop a theoretical frame-
HIERARCHICAL GENIC STRUCTUREwork for the analysis of population structure in autotet-
AND DEFINITION OF PARAMETERS

raploid species. Recurrence equations that describe
probabilities of gene identity under the island or isola- Let Q stand for the probability of identity, Q0 for pairs

of genes within individuals, Q 1 for pairs of gene betweention by distance models may be generalized for the case
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individuals within subpopulations, and Q 2 for pairs of where m is the mutation rate per generation, P(t) the
probability that two genes coalesce at generation t ingenes between subpopulations. Throughout this article,

the notation Q j will refer to probabilities of identity in the past, and T a random variable that describes the
coalescence time for these two genes. As shown by Slat-state (IIS) and the j indices ( j 5 0 to 2) to the same

pairs of genes. The addition of a dot on the top of a kin and Voelm (1991; see also Tachida and Yoshimaru

1996), if we think of the process as going backward inparameter will denote probabilities of identity by de-
time, then T can be divided in two phases: T1, the waitingscent (IBD) (i.e., Q̇ j ), and the standard notation ; will
time for two genes to be found in the same individual,be used to distinguish the definition of parameters from
and T2, the time for the two genes in the same individualtheir values under particular models of population
to coalesce (Figure 2). As a result, and since T1 and T2structure.
are independent,Under tetrasomic inheritance, four genes are avail-

able at a given locus. Then, a random pair of genes
Q̇ r 5 E[(1 2 m)2(T11T 2)] 5 E[(1 2 m)2T1]

within individuals (Q 0) can be issued either from the
· E[(1 2 m)2T 2]. (6)same gamete (probability 1/3) or from two different

gametes (probability 2/3). If Q A and Q B denote the
Because T2 corresponds to a coalescence time, thenprobability of IIS associated, respectively, with these two

using the relationships between the coalescence of
categories of pairs of genes, then Q 0 5 (Q A 1 2Q B)/3.

genes and identity probabilities, E[(1 2 m)2T 2] repre-
Following Cockerham and Weir (1987, 1993; see also

sents the IBD probability for a pair of genes when both
Rousset 1996), F-statistics parameters can be defined as

are sampled in the same individual (Figure 2):

FIT ;
Q 0 2 Q 2

1 2 Q 2

(1) E[(1 2 m)2T 2] 5
1 1 Q̇ A 1 2Q̇ B

4
. (7)

Unlike T2, T1 in this instance is not a coalescence timeFIS ; Q 0 2 Q 1

1 2 Q 1

5
(Q A 1 2Q B)/3 2 Q 1

1 2 Q 1

(2)
but rather the “waiting time” for two genes initially at
distance r to migrate within the same individual (Figure

FST ;
Q 1 2 Q 2

1 2 Q 2

. (3) 2). To define T1, we do not make any reference to
identity between the two genes under consideration,

Another parameter we will consider is and this waiting time will depend only on the initial
distance between the two genes (r 5 1 or 2) and on the
way genes migrate within and between subpopulations.ṙ ; Q̇ 1 2 Q̇ 2

(1 1 Q̇ A 1 2Q̇ B)/4 2 Q̇ 2

. (4)
Hence, E[(1 2 m)2T1], which we will denote ḣr in what
follows, is not an IBD probability but simply denotesThis parameter is analogous to the “correlation be-
the probability that neither gene has mutated duringtween truly outcrossed mates” in diploids (Waller and
T1. Since double reduction affects only transition proba-

Knight 1989; Tachida and Yoshimaru 1996). For dip-
bilities for genes within individuals, it does not affectloids, interest in this correlation has come from the
T1 nor ḣr. These two parameters are consequently inde-fact that the relationship between this parameter, the
pendent from the proportion of double reduction.migration rate, and the population size is independent

Now, following (2), and using (3), the IBD probabilityfrom the selfing rate (see Nagylaki 1983; Tachida and
for two genes in different individuals at distance r re-

Yoshimaru 1996). We will show that, for ṙ in autotetra-
duces toploids, this relationship is moreover independent of the

proportion of double reduction and therefore identical
Q̇ r 5 ḣr ·

1 1 Q̇ A 1 2Q̇ B

4
(8)for all loci independently of their distance to the centro-

mere.
and, putting this formula into (4), yields the followingLet us define Q̇ r as the IBD probability for two genes
expression for ṙ :in different individuals located either in two different

subpopulations (r 5 2) or in the same subpopulation
ṙ 5

(1 1 Q̇ A 1 2Q̇ B)ḣ1/4 2 (1 1 Q̇ A 1 2Q̇ B)ḣ2/4
(1 1 Q̇ A 1 2Q̇ B)/4 2 (1 1 Q̇ A 1 2Q̇ B)ḣ 2/4

(r 5 1) and use the relationship between coalescence
of genes and identity probabilities (Malécot 1975;
Tachida 1985; Slatkin and Voelm 1991): the probabil-

5
ḣ1 2 ḣ 2

1 2 ḣ 2

. (9)
ity of IBD for a pair of genes is the probability that
neither gene has mutated between the present time

This parameter is of interest for two reasons: (1) Becauseand the time of first common ancestry, that is, their
the ḣ r s are independent of the coefficient of doublecoalescence time (Malécot 1975; Slatkin 1991). This
reduction, this equation shows that this is also true foryields the expression
ṙ; (2) as will be shown later, the expected value of ṙ
can be deduced with minimal effort from previousQ̇ r 5 o

∞

t51
(1 2 m)2t P(t) 5 E[(1 2 m)2T ], (5)

models of haploid populations.
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Figure 2.—Waiting times for coalescence of two genes located in two different individuals that are at distance x at the present
time (x 5 1 for individuals located in the same population; x 5 2 for individuals in two different populations) and their associated
probabilities. Populations are represented by large ellipses; small circles represent genes (four such circles denote an individual)
shaded in black or gray for the genes studied, in white for genes not considered.

EQUILIBRIUM VALUES OF THE PARAMETERSConsider now,
IN AN ISLAND MODEL

We consider a finite island model (Wright 1951) ofṙ

1 2 ṙ
5

Q̇ 1 2 Q̇ 2

(1 1 Q̇ A 1 2Q̇ B)/4 2 Q̇ 1

. (10)
population structure: a set of n subpopulations, each
consisting of N individuals, with nonoverlapping gener-

Noting that ations. Individuals are monoecious and subpopulations
exchange migrant gametes at a rate m. Each migrant
has an equal chance of coming from each of the other1 1 3ḞIS

4
5

(1 1 Q̇ A 1 2Q̇ B)/4 2 Q̇ 1

1 2 Q̇ 1

,
n 2 1 subpopulations. Genes are assumed to be neutral
and the mutation rate m is the same for all alleles. Follow-

we can always write ing Nagylaki (1983) and Crow and Aoki (1984), two
notations will be used. After migration, the proportion
of pairs of genes that originate from one subpopulationḞST

1 2 ḞST

5
(1 1 Q̇ A 1 2Q̇ B)/4 2 Q̇ 1

1 2 Q̇ 1 in the previous generation is a 5 (1 2 m)2 1 m2/(n 2
1) for genes within a subpopulation, and b 5 (1 2 a)/·

Q̇ 1 2 Q̇ 2

(1 1 Q̇ A 1 2Q̇ B)/4 2 Q̇ 1

,
(n 2 1) for genes from different subpopulations. In each
subpopulation, a proportion S of offspring is produced

which reduces to through selfing and the proportion of double reduction
for the studied locus is denoted a.

When individuals are autotetraploid, there are 4NḞST

1 2 ḞST

5
1 1 3ḞIS

4
·

ṙ

1 2 ṙ
. (11)

genes in each subpopulation. Then, provided neither
gene has mutated [with probability g 5 (1 2 m)2], genes

This may be compared to the result of the diploid originating from the same subpopulation are identical
model with selfing (Tachida and Yoshimaru 1996), in by descent with probability (1 1 3Q̇ 0)/4N 1 (1 2
which one can write 1/N)Q̇ 1, while genes from different subpopulations are

identical by descent with probability Q̇ 2. The recurrence
relations for Q̇ 1 and Q̇ 2 are as follows (t denoting timeḞST

1 2 ḞST

5
1 1 ḞIS

2
·

ṙ

1 2 ṙ
. (12)

in generation):
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for example, Bennett (1968) for the case of a (single)
Q̇ 1,t11 5 g ·




a · 31 1 3Q̇ 0,t

4N
1 11 2

1
N2Q̇ 1,t4 large autotetraploid population]. When neither selfing

nor double reduction are occurring in the population
1 (1 2 a)Q̇ 2,t





(13) (i.e., S 5 0 and a 5 0), FIS 5 0. Equation 21 can then
be further simplified into

Q̇ 2,t11 5 g ·



b · 31 1 3Q̇ 0,t

4N
1 11 2

1
N2Q̇ 1,t4 ḞST ≈

1
1 1 8Nmu 1 8Nm

. (22)

1 (1 2 b)Q̇ 2,t




. (14) Expected values of ṙ can be computed for other muta-

tion models as previously described (e.g., Crow and
Combining these two relationships, we obtain Aoki 1984; Rousset 1996), as well as for other geo-

graphical models. Under isolation by distance models,
it can be shown that rr/(1 2 rr) ≈ r/(2Ds 2) 1 Constant,Q̇ 1,t11 2 Q̇ 2,t11 5 g·




(a 2 b)·31 1 3Q̇ 0,t

4N
1 11 2

1
N2Q̇ 1,t4

for a pair of populations at distance r in a one-dimen-
sional model, and rr/(1 2 rr) ≈ ln(r)/(2Dps2) 1 Con-

1 (b 2 a)Q̇ 2,t




. (15)

stant, in a two-dimensional model, where D is the popu-
lation density and s2 is a measure of dispersal (Rousset

At equilibrium, the Q i’s do not change, hence 1997).

(Q̇ 1 2 Q̇ 2) · 31 2 g · (a 2 b) · 11 2
1
N24 POPULATION PARAMETERS ESTIMATION

Consider a dataset describing the genotypic constitu-5 g · (a 2 b) ·
1 1 3Q̇ 0 2 4Q̇ 2

4N
. (16)

tion of autotetraploid individuals sampled (at random)
from a set of r subpopulations. Each subpopulation is

Using d 5 a 2 b, this equation can be expressed as
represented by ni individuals (sample size), where i re-
fers to the ith subpopulation. To build estimators for

C 5
Q̇ 1 2 Q̇ 2

1 1 3Q̇ 0 2 4Q̇ 2

5
gd

4N(1 2 gd) 1 4gd
. (17) the level of population differentiation, we use the linear

model with hierarchical effects (subpopulations, indi-
viduals within subpopulations, and genes within individ-Noting that (1 1 Q̇ A 1 2Q̇ B)/4 2 Q̇ 1 5 (1 1 3Q̇ 0 2
uals) developed by Cockerham (1969, 1973) for the4Q̇ 1)/4, then substituting this into (10) and using (17),
analysis of diploid population structure. Now xijk is anyields
indicator variable describing the state of the kth gene
(1 # k # 4, instead of 1 # k # 2 for diploids) in theṙ

1 2 ṙ
5

4(Q̇ 1 2 Q̇ 2)
1 2 3Q̇ 0 2 4Q̇ 1

5
4C

1 2 4C
5

gd
N(1 2 gd)

,
jth sampled individual (1 # j # ni) of the ith subpopula-
tion (1 # i # r). For a particular allele u, xijk:u 5 1, if(18)
the gene is u, xijk:u 5 0 otherwise, and the ANOVA setup

which is the same result as in the diploid (or haploid) is as follows:
model. Using u 5 n/(n 2 1), Equation 18 becomes

o
r

Subpop
o
ni

Indiv
o
4

Genes
(xijk:u 2 x...:u)2 5 o

i
o

j
o

k
(xijk:u 2 xij.:u)2

ṙ

1 2 ṙ
5

1
2N(mu 1 m)

·(1 1 O(m) 1 O(m)), (19)
1 o

i
o

j
o

k
(xij.:u 2 xi..:u)2

i.e., 1 o
i

o
j

o
k

(xi..:u 2 x...:u)2

5 SS g[enes]:u 1 SS i[ndividuals]:u
ṙ

1 2 ṙ
≈

1
2N(mu 1 m)

(20)

1 SS s[ubpopulation]:u.
and, using (11),

Using the same developments as for diploids (Weir

1996), the following sum of squares expectations canḞST

1 2 ḞST

≈
1 1 3ḞIS

4
·

1
2N(mu 1 m)

. (21) be derived (details are given in the appendix): for genes
within individuals

As one may note, we do not need to know identity ε(SS g[enes]) 5 3S1(1 2 Q 0); (23a)
probabilities within subpopulations (Q 0 and Q 1) to de-

for genes between individuals within subpopulationsrive these results. For diploids, the expected equilibrium
value of FIS depends on the selfing rate (S), and the ε(SS i[ndivis]) 5 Wd · (4(Q 0 2 Q 1) 1 (1 2 Q 0)); (23b)
population size (N). For autotetraploids, it also depends
on the proportion of double reduction that increases and for genes between individuals from different sub-

populationsthe proportion of homozygous gametes produced [see,
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ε(SS s[ubpops]) 5 4Wa · (Q 1 2 Q 2) 1 Ww · [4(Q 0 2 Q 1) mates in autotetraploids are expected to vary across the
loci as a consequence of different amounts of double

1 (1 2 Q 0)], (23c)
reduction during meiosis (Figure 1 and Introduction).
This problem is illustrated in Equation (11) because FISwhere S1 5 Rin i , S2 5 Rin2

i , Wd ; S1 2 r, Wa ; S1 2 S2/
will vary depending on both the selfing rate and theS1, and Ww ; r 2 1.
proportion of double reduction (a). Since the propor-From Equations 23a–23c, we obtain
tion of double reduction for a given locus is difficult
to assess empirically and because population structureQ 1 2 Q 2 5

Wdε(SS s) 2 Wwε(SS i)
4WaWd

(24)
estimates should be based on several loci, we defined a
new function of identity probabilities, r, which is an

1 2 Q 2 5
1

4WaWd
3WaWd

S1

ε(SS g) 1 (Wa 2 Ww) analogue to the “correlation between truly outcrossed
mates” previously defined for diploids (Waller and

ε(SS i) 1 Wdε(SS s)4, (25) Knight 1989; Tachida and Yoshimaru 1996). For both
diploids and tetraploids, the relationship between this

which yield an estimator of FST: correlation and the product Nm is independent from
the selfing rate (except when selfing affects migration).

F̂ST 5
WdSS s 2 WwSS i

[WdSSp 1 (Wa 2 Ww)SS i 1 (WaWd/S1)SS g]
. For autotetraploids, interest in r comes mainly from the

fact that this relationship is also independent of the
(26) proportion of double reduction and therefore identical

for all loci independently of their distance to the centro-Now, noting that 1 1 3Q 0 2 4Q 1 5 1 2 Q 0 1 4(Q 0 2
mere. The parameter r can consequently be used toQ 1) 5 ε(SS I)/Wd, we have
assess population structure over many loci, without any
prior knowledge concerning the proportion of doubler̂

1 2 r̂
5

4 · (Q̂ 1 2 Q̂ 2)
1 1 3Q̂ 0 2 4Q̂ 1

5
WdSS s 2 WwSS i

WaSS i

.
reduction.

(27) Inspection of the relationship between r and FST (11)
shows that FST is increased by a factor (1 1 3FIS)/4 whenAn estimator of F̂IT ; 1 2 (1 2 Q̂ 1)/(1 2 Q̂ 2) is
self-fertilization or double reduction occurs within sub-
populations. This means that like self-fertilization, dou-F̂ IT 5

4(WaWd/3S1)SS g

[WdSSp 1 (Wa 2 Ww)SS i 1 (WaWd/S1)SS g]
,

(28) ble reduction reduces the effective subpopulation size
and hence promotes differentiation among subpopula-and
tions (for the studied locus). The complication due to
partial selfing or double reduction can be absorbed

F̂ IS 5 1 2
1 2 F̂ IT

1 2 F̂ ST

. (29) in the single parameter FIS and by defining the effec-
tive population size as NZ 5 N/(1 1 3FIS). Equation

For all these parameters, multilocus estimates (i.e., (21) can then be used with NZ replacing N, i.e., FST/
combining the information from all alleles and all loci) (1 2 FST) 5 1/(8NZmu 1 8NZm), while r is still equal to
are defined as the sum of locus-specific numerators di- r/(1 2 r) ≈ 1/(2Nmu 1 2Nm), which depends only on
vided by the sum of locus-specific denominators (see the migration rate, mutation rate, and the demographic
also Reynolds et al. 1983; Weir 1996). For example, population size (i.e., N, not NZ). Comparison of Equa-

tion 11 with the results of the diploid model (12) furtherr̂

1 2 r̂
5

onl
l51oul

u51(WdSS S 2 WwSS i)lu

onl
l51oul

u51(WaSS i)lu

, (30) shows that self-fertilization has a greater influence on
differentiation in autotetraploids as compared to dip-

where l refers to the lth loci and u to the uth allele loids.
(with nl, the number of locus and ul, the number of When ignoring selfing and double reduction, the ex-
alleles at locus l). Given the dependency of F-statistics pected effect of drift under the island model of popula-
on the proportion of double reduction (see above), tion structure is halved at equilibrium as compared to
multilocus estimates of these parameters will be appro- expectations for diploids, i.e., FST ≈ 1/(1 1 4Nmu 1
priate to make inferences about the balance between 4Nm) (Crow and Aoki 1984; Cockerham and Weir

migration (and/or mutation) and drift only if a 5 0 1987). This can be interpreted as the decrease in the
for all the studied loci. As soon as a ? 0 for at least one rate of coalescence of genes within subpopulations and
locus, only the estimate of r will have this property. is due to the fact that the probability of drawing the

same gene within an individual is reduced to 1/4 in an
autotetraploid species instead of 1/2 in diploids. In

DISCUSSION other words, this means that, for a same demographic
population size, the effective population size is doubledThe aim of this study was to adapt the use of Wright’s

FST to estimate population structure and gene flow in in an autotetraploid population as compared to a dip-
loid one. This result is in accordance with earlier workautotetraploid species. In contrast to diploids, FST esti-
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selfing (S ? 0). We assumed discrete and nonoverlap-
ping generations. Mutation occurs at a rate m per locus
per generation, each allele having an equal chance to
mutate toward one of the K-1 other allelic states. Migra-
tion occurs through male gametes only: to produce the
next generation in a given subpopulation, each pollen
grain was sampled independently, and with probability
m it was chosen among gametes from the remaining
n 2 1 subpopulations. As shown in Figure 3, the discrep-
ancies between the average value of the estimator and
the expected value of r are very small even for small
sample sizes, with either S 5 0 or S ? 0 and a ? 0.

We wrote a computer program estimating F-statistics
and the parameter r according to the ANOVA setup
developed above (details of the computations are given
in the appendix). The program provides estimations
for r, FST, FIS, and FIT for each allele as well as estimates
combining data over alleles and over loci. To test for a
departure from FST 5 0, the program allows for Fisher’s
exact test on (population 3 genotypes) contingency
tables [for each locus separately, see Raymond and
Rousset (1995) for the diploid model]. Exact tests on

Figure 3.—Comparison of average values of the estimator
contingency tables in which cell counts are tetraploid(r̂) with expected equilibrium values of r. An island model

was simulated assuming K 5 9 allelic states for each of 10 loci, genotypes are valid even if there is double reduction.
n 5 12 subpopulations and m 5 1025 (see text for a complete As for diploid datasets (Raymond and Rousset 1995),
description of the simulation procedure). To determine the

the software allows for analysis either over the whole setnumber of generations required for the population to reach
of populations or for pairs of populations. The programits equilibrium, sampling was performed in generations 200,

400, 1000, 2000, and 5000. For N 5 50, the estimates were containing both estimations and exact tests procedures
stable after 2000 generations. Each symbol gives the value is available upon request.
of r̂ computed after 2000 generations and averaged over 10

We thank D. Couvet and P. Jarne for discussions, M. Raymond forreplicated simulations (standard errors were always less than
advice concerning the computer program, and J. M. Prosperi for1023 and are therefore not shown) for N 5 50, no selfing, a 5
comments on the manuscript. This work was supported by a grant0. s is for sample size e 5 10, d for e 5 30. Lines were
from the French “Bureau des Ressources Génétiques” to E.J. and J.R.computed using the expected equilibrium value of r, i.e., r ≈
This is contribution number 98-085 of the Institut des Sciences de1/(1 1 2Nmu 1 2Nm) for small Nm. Simulations were per-
l’Evolution.formed for two other parameter sets: N 5 50, S 5 0.2, a 5

0; N 5 50, no selfing, a 5 2/7. r is identical for these different
parameter sets and the average values of the estimates (r̂) are
too close to be distinguished on the figure.
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o
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(xijk 2 E) · (xijk9 2 E) for genes between individuals from different subpopula-
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1 o
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o
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(xijk 2 E ) · (xij9k9 2 E)4, ε(SS s[ubpops]) 5 4o
i
niεi.. 2 4S1ε...

(A6)
5 4Wa · (Q 1 2 Q 2) 1 Ww

i.e., · [4(Q 0 2 Q 1) 1 (1 2 Q 0)]. (A11)

As for diploids (Cockerham and Weir 1987), the com-εi.. 5 (1 2 Q 3) 2
ni 2 1

ni

(1 2 Q 1) 2
3

4ni

(1 2 Q 0)
ponents of variance of the nested ANOVA model (xijk:u 5
mu 1 ai:u 1 bj:u 1 εijk:u) can be expressed as linear functions

ε... 5 ε[(x... 2 E)2] 5 ε31 1
4S1

o
i

o
j

o
k

xijk 2 E2
2

4, (A7) of identity probabilities, i.e.,

s2
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s2
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S 2

S 2
1
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1

2 and

s2
e ; 1 2 Q 0:u 5 (1 2 Q 2:u)(1 2 FIT). (A14)

· (1 2 Q 1) 2
3

4S 1

(1 2 Q 0), (A8)
ANOVA framework for the estimation of r and F-statis-

tics: To compute sum of squares, straight way gene fre-
where S1 5 Rini and S2 5 Rin2

i . quencies were used instead of indicator variables (xijk).
Now, the basic relationship ε[Rr

iwi(xi 2 x)2] 5 ε[Rr
iwi This method is based on the following relationships be-

(xi 2 E)2] 2 ε[Rr
iwi(x 2 E)2] can be used to write sum of tween gene frequency estimates and the indicator variable

squares expectations, for genes within individuals, [see Weir (1996) for the diploid case],
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i
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5 ε3o
i

o
j

o
k

(xijk 2 E)24
x 2

ij. 5 ε(o
k
xijk)2/16 5 (p̃Ai 1 3P̃AAi)/4,

2 ε3o
i
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j
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k

(xij. 2 E)24 where p̃ Ai 5 RjRkxijk/4ni and P̃AAi 5 P̃ 0,i 1 P̃ 1,i/2 1P̃ ,2;i/6
with P0,i , P̃ 1 ,i, and P̃2,i standing, respectively, for the pro-

and using (A6) and (A7), we obtain portion of monogenic (AAAA), trigenic (AAAa), and di-
genic (AAab) individuals in the ith population (Malécotε(SS g[enes]) 5 4S1εijk 2 4S1εij. 5 3S1(1 2 Q 0). (A9)
1948). These relationships yield more convenient ex-

Following the same procedure and denoting Wd ; pressions for the variance components of the analysis,
S 1 2 r, Wa ; S1 2 S2/S 1, and Ww ; r 2 1, we find the as shown in Table 1.
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TABLE 1

Nested analysis of variance layout for estimation of the variance components of population structure
in autotetraploid organisms, and corresponding gene frequency-based equations.

Source d.f. Sum of squares Expected mean squarea

Between populations r 2 1 pA(1 2 pA)[(1 2 FIT) 1 4(FIT 2 FST)o
r

i51
o
ni

j51
o
4

k51

(xi.. 2 x...)2

1 4nc FST] 5 s2
e 1 4s2

b 1 4ncs
2
a

5 4 o
r

i51

ni(p̃Ai 2 p̃A)2

Individuals pA(1 2 pA)[(1 2 FIT) 1 4(FIT 2 FST)]o
r

i51

(ni 2 1) o
r

i51
o
ni

j51
o
4

k51

(xij. 2 xxi..)2

in populations
5 s2

e 1 4s2
b

5 n. 2 r 5 o
r

i51

ni(p̃Ai 1 3P̃AAi 2 4p̃ 2
Ai)

Genes in individuals pA(1 2 pA)(1 2 FIT)o
r

i51

ni(b 2 1) o
r

i51
o
ni

j51
o
4

k51

(xijk 2 xij·)2

5 s2
e

5 3n. 5 3 o
r

i51

ni(p̃Ai 2 P̃AAi)

This table directly follows a two-way nested ANOVA (see Sokal and Rohlf 1995). Corresponding data
design: r populations (1 # i # r) of sample size ni (1 # j # ni), and b genes registered for each individual
(1 # k # 4).

a nc 5 1/(r 2 1) [Rr
i51ni 2 Rr

i51n2
i /Rr

i51ni].


