The *Primus* project - towards understanding the nature of lichen symbiosis

<u>Pavel Škaloud</u>, Zuzana Vaiglová, Jana Steinová, Ivana Černajová, Patricia Moya, Helena Bestová, Ondřej Peksa

FACULTY OF SCIENCE Charles University

Asterochloris

• *Asterochloris* – one of the most common lichen symbionts

Asterochloris – any patterns in diversity?

- At the moment, more than 1500 occurrence data available
 - Algal ITS rDNA + actin sequences
 - Substrate data, mycobiont identity (ITS rDNA), climatic data

Asterochloris diversity

• 48 species-level lineages (ABGD, GMYC, bPTP delimitation)

Asterochloris diversity

- 48 species-level lineages (ABGD, GMYC, bPTP delimitation)
- 93.6 % of all sequences belong to the 19 most common species
- A. glomerata, A. mediterranea as the most frequently found photobionts

• Contrasting biogeographic patterns of A. glomerata and A. mediterranea

Variation partitioning

- Which are the main factors structuring the extant diversity?
- <u>Response variable</u>: algal diversity (200 PCoA axes)
- Explanatory variables: geography, mycobiont, climate, substrate

Variation partitioning

• Which are the main factors structuring the extant diversity?

Mycobiont selectivity

Mycobiont selectivity

Climate

Climate

leprarii phycobiontica echinata clade_StA5 clade_StA1 clade_A9 gaertneri clade_A22 friedlii clade_12 aff.irregularis clade_8 clade_9B italiana woessiae irregularis lobophora

- mediterranea
- glomerata

Substrate

Species differences

- Distinct differences among the species
- Cladonia was the ancestral mycobiont of the genus Asterochloris

Species differences

- Why so strong fungal selectivity? Is it problematic to cooperate with a number of different mycobionts?
- Are algal habitat/climatic preferences mirrored in fungal ones?
- How does the composition of photobiont pools reflect the habitat and climate?

The Primus project

Objective 1: Distribution and ecological differentiation of symbiotic partners

- Which abiotic and ecological factors influence the distribution of symbiotic partners?
- Do the coexisting partners exhibit comparable distribution patterns?

Objective 2: Selection towards the pool of available partners

- How is the available pool of symbionts mirrored in the realized diversity of symbiotic partners?
- How do the distribution ranges of lichen species correspond to the available pools of algae?

Objective 3: Compatibility and viability of symbiotic partners

Objective 2

- Is it possible to artificially join the ecologically distinct partners into viable lichen organisms?
- Are the compatible partners able to live in conditions suitable for only one of the symbionts?

Objective 3

Objective 1

1,120 lichens

investigated

- 8 sampling sites along the pH gradient
 - > 20 *Cladonia* specimens
 - 1 composite soil and lichen sample

- 1,120 lichen thalli
 - Sanger sequencing of algae, fungi, and yeasts
- 56 composite soil and lichen samples
 - Illumina meta-barcoding of symbionts, soil chemical analyses

• Photobionts: both geographical and ecological patterns are obvious

Lichen yeasts: detected in both corticate and ecorticate species
No effect to lichen morphology as previously hypothesized

Cladonia pocillum

Cladonia rangiferina

identifying overlaps and "holes"

Modelling recent and future distribution patterns

identifying overlaps and "holes"

FUTURE CLIMATIC PREDICTIONS

2. Selection towards the pool of available partners

- Illumina meta-barcoding of algae occurring in both soil and composite lichen samples
- 6.6 mil algal sequences after filtering
- Asterochloris as the most dominant genus

2. Selection towards the pool of available partners

- Illumina meta-barcoding of algae occurring in both soil and composite lichen samples
- 6.6 mil algal sequences after filtering
- Asterochloris as the most dominant genus

2. Selection towards the pool of available partners

- Several cultures established:
 - > 7 Asterochloris species
 - > 14 Cladonia species
 - 7 Cystobasidiomycetes genotypes

• Relichenisation experiments

• Relichenisation experiments

- Relichenisation experiments
- The yeast profits on the symbiosis, but probably does not involve the thallus formation

Relichenisation experiments

Future plans

- Optimization of the relichenisation methodology
- Detection of the extent of symbiosis
- Artificial formation of several symbiotic combinations, evaluation of their fitness

Many open questions still remain to be addressed

- How to differentiate between the real algal symbionts and epiphytes?
- Are the fungi genetically uniform?
- What is the function of yeasts in the lichen thallus? Are they real symbionts or only endophytes?
- How to evaluate the extent of symbiosis in artificial lichens? Raman micro-spectroscopy?

Thank you for your attention

CHARLES UNIVERSITY Pr

Primus Research Programme