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Patterns in the spatial distribution of organisms provide import-
ant information about mechanisms that regulate the diversity
of life and the complexity of ecosystems1,2. Although micro-
organisms may comprise much of the Earth’s biodiversity3,4 and
have critical roles in biogeochemistry and ecosystem function-
ing5–7, little is known about their spatial diversification. Here we

present quantitative estimates of microbial community turnover
at local and regional scales using the largest spatially explicit
microbial diversity data set available (>106 sample pairs). Turn-
over rates were small across large geographical distances, of
similar magnitude when measured within distinct habitats, and
did not increase going from one vegetation type to another. The
taxa–area relationship of these terrestrial microbial eukaryotes
was relatively flat (slope z 5 0.074) and consistent with those
reported in aquatic habitats8,9. This suggests that despite high
local diversity, microorganisms may have only moderate regional
diversity. We show how turnover patterns can be used to project
taxa–area relationships up to whole continents. Taxa dissimila-
rities across continents and between them would strengthen
these projections. Such data do not yet exist, but would be
feasible to collect.

Ecologists studying macroorganisms have long recognized that
beta-diversity (how community composition changes across a
landscape) is central to understanding the forces responsible for
the magnitude and variability of biodiversity. Patterns of beta-
diversity can offer valuable clues to the relative influence of dispersal
limitation, environmental heterogeneity, and environmental and
evolutionary change in shaping the structure of ecological commu-
nities10–14. Despite an increasing awareness that spatial patterning
of soil microbiota can have important aboveground consequences
in regard to plant community structure and ecosystem function-
ing5,6,15,16, microbial beta-diversity patterns are largely unknown.
Inadequate sampling has been a major limitation and scientists are
only now beginning to explore emergent patterns and principles
that may be common to microbes, plants and animals17,18. Thus,
whereas it is widely accepted that the similarity in plant and animal
community composition decays with increasing distance between
samples11,13,19, patterns of microbial turnover in terrestrial environ-
ments remain unstudied. Here, we test whether similarity in
microbial eukaryote community composition decays with geo-
graphical distance as observed in macroorganisms. We also explore
how these biodiversity turnover patterns are influenced by strong
habitat-related environmental discontinuities. Finally, we apply
spatial scaling theory to these turnover patterns to predict how
microbial biodiversity might increase with sampling area from local
to continental scales in Australia.

A total of 1,536 soil samples were collected in arid Australia using
a spatially explicit nested design. The design resulted in 1,117,880
pairwise sample comparisons, with distances ranging from 1 m to
,100 km represented by multiple replicate sample pairs. Samples
were taken from four distinct land systems that varied substantially
in geology, topography and native vegetation (see Supplementary
Information). We measured the similarity between any two samples
using the Sørensen index, defined as the number of taxa in common
divided by the average number of taxa in the two samples20. The rate
at which Sørensen similarity decays with increasing distance
between samples (the distance–decay relationship) can be directly
related to the species–area relationship21. Other measures of simi-
larity based on presence/absence of data yielded qualitatively similar
results to those reported here.

We characterized the beta-diversity of ascomycete fungi by
automated ribosomal RNA intergenic spacer analysis (ARISA), a
commonly used DNA-based community fingerprinting method22–

24. ARISA is a high-resolution, highly reproducible technique for
detecting differences between complex fungal communities22. We
chose ARISA over DNA sequencing because it allowed assessment of
microbial community turnover at an unparalleled sample size and
spatial scale. ARISA exploits variability in the length of the inter-
vening transcribed spacer regions of rRNA genes (ITS) to sort
samples rapidly into operational taxonomic units (OTUs). Mem-
bers of different species may share the same ITS fragment size22.
Although ARISA assays a different taxonomic resolution than
species, it is a consistent measure of community composition
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(that is, members of any one species consistently produce the same
fragment size and different-sized fragments always derive from
members of one or more different species). Consequently, differ-
ences between two OTU assemblages directly reflect changes in
species composition.

Within each of the four distinct land systems, community OTU
similarity decayed significantly with distance (Fig. 1). These data
show that the sampled microbes were not randomly distributed, but
rather exhibited spatially predictable, aggregated patterns over
scales ranging from 1 m2 to 1010 m2. The best fit and the most
homoscedastic residuals were found in models that used the log
transformation of similarity against the log transformation of
distance, implying a power-law rate of distance decay. The average
slope estimated from all pairwise replications within land systems
was 20.043 (95% confidence intervals (CI): 20.049 to 20.037),
and three of the four land systems had slopes that were statistically
indistinguishable from one another (Table 1). A prevailing view8

expects that microbial eukaryotes such as ascomycetes will prove to
be nearly ubiquitous geographically, owing to their large population
densities, producing abundant spores that can travel over long
distances. The decline in similarity with distance found here
demonstrates that there is at least some geographical differentiation.

Geographical distance was a more useful predictor of ascomycete

community turnover than land system type. When the effect of land
system was removed, we found a weak but highly significant
negative correlation between similarity and geographical distance
(Table 1). In contrast, after controlling for geographical distance, we
did not consistently find lower similarity between compared to
within land system types. For sample pairs with a member in the
rocky land systems (Pulgamurtie and Olive Downs), similarity with
other samples from the same land system averaged slightly higher
than similarity with samples from other land systems, after adjust-
ing for distance; but for sample pairs with a member in the sandy
land systems (Corner and Rodges), similarity with other samples
from the same land system actually averaged slightly lower than
similarity with samples from other land systems, after adjusting for
distance. The lack of correlation with land system suggests that
ascomycetes respond to their environment at a scale that is poorly
described by the geomorphic variables used to classify land systems,
being more likely to respond to soil chemistry, water and resource
concentrations at much smaller scales.

The slope of the distance–decay curve reflects the rate at which
OTU richness increases with sampling area, or the taxa–area
relationship. A greater rate of distance–decay between samples
implies a faster turnover in OTU composition across a landscape
and hence a steeper taxa–area relationship. Recent theory21 suggests
that if the distance–decay curve in a region is well approximated by a
power law, then the taxa–area relationship will also be well approxi-
mated by a power law of the form

OTUa ¼ OTUA
a

A

� �z

ð1Þ

where OTUA is the number of OTUs in a region of area A, OTUa is
the number of OTUs in a smaller sampling area a within A, and z is a
constant ranging between 0 and 1. The expression relating the
distance–decay curve to the power-law OTU–area relationship
exponent z takes the form

xd ¼ xD
d

D

� �22z

ð2Þ

where xd and xD are the expected Sørensen similarities between two
samples of equal area separated by distances d , D, respectively.
Hence the exponent 22z of the power-law distance–decay curve
(equation (2)) may be used to estimate the exponent z of the power-
law taxa–area relationship (equation (1)) across the spatial scales
a ¼ d2 to A ¼ D2. The theory underpinning equations (1)–(2) is
equally valid for any biologically consistent taxonomic unit.

The distance–decay curve for the entire microbial data set at Sturt
National Park is well characterized by a power-law distance–decay
model across the spatial scales d ranging from 1 m to about 105 m.
We may therefore estimate the slope z of the OTU–area relationship
across these scales. A least squares regression of log-transformed
similarity against log-transformed distance through all of the data
gives a slope of 20.147 (n ¼ 907,878, r2 ¼ 0.0051, P , 0.001, 95%
CI: 20.152 to 20.143), predicting a power-law exponent z ¼ 0.074
across the scales 1 m2 , a , 1010 m2. We can now extrapolate

Figure 1 The distance–decay of similarity for microbial fungi OTUs. a–d, Shown are the

average Sørensen similarity values for within land system data (open circles) and between

land system data (filled circles). Averages were taken across similarity values within

equidistant logarithmic intervals of 0.01. Data correspond to Pulgamurtie (a), Rodges (b),

Olive Downs (c) and Corner (d). Summary statistics incorporating the replicate data within

each distance class are listed in Table 1.

Table 1 Summary statistics for the fungal OTU distance–decay relationships at Sturt National Park

Land system Samples Within land system regression statistics Partial Mantel correlations

n Slope r2 95% CI N r(SD.L) r(SL.D)
...................................................................................................................................................................................................................................................................................................................................................................

Pulgamurtie 381 72,390 20.047 0.0018 20.056 to 20.039 442,165 20.066 0.082
Olive Downs 379 71,631 20.035 0.0005 20.047 to 20.024 440,230 20.097 0.023
Rodges 317 50,086 20.076 0.0027 20.089 to 20.064 378,261 20.091 20.054
Corner 271 36,585 20.063 0.0014 20.080 to 20.046 329,800 20.087 20.102
...................................................................................................................................................................................................................................................................................................................................................................

Within land system statistics result from weighted least squares regressions of log-transformed fungal OTU similarity against log-transformed geographical distance. All samples that gave .1mg of PCR-
amplifiable DNA were used in the analysis, and n is the corresponding number of similarity pairs. To account for zero similarity values, logarithmic transformations were of the form log(Y þ 0.001)20. All
slopes were significantly different from zero (P , 0.001); P-values and 95% confidence intervals (CI) are based on 5,000 randomized pairings of OTU similarity and geographical distance28. The
partial Mantel statistic r(SD.L) estimates the correlation between matrices S (OTU similarity) and D (geographical distance) while controlling for the effect of same versus different L (land system).
Similarly, r(SL.D) estimates the correlation between matrices S (OTU similarity) and L (land system) while controlling for the effect of D. Land system matrices L contained ones where pairs of sites
were from the same land system and zeros where sites were from different land systems. For any given land system, the number of similarity valuesN includes the within land system similarities and
the similarities between that land system and the other three land systems. All partial regression coefficients were significantly different from zero (P , 0.001)28.
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microbial biodiversity from the scale of an individual soil sample,
where OTU richness is quantifiable, to regional scales using
equation (1) (Fig. 2).

It is important to bear in mind that the estimated taxa–area
relationship for any group of organisms may depend on the defined
OTU. The ARISA-defined OTU used in this study will markedly
underestimate the number of Ascomycota species in each soil
sample22. The relationship between our estimated slope z and that
derived using different taxonomic criteria, such as whole-genome
relatedness or morphological similarity, is less clear. Our predicted
taxa–area slope is remarkably consistent with those reported for
microbial eukaryotic species in the Arctic benthos9 (ciliates
z ¼ 0.077, diatoms z ¼ 0.066) and in freshwater habitats25 (ciliates
z ¼ 0.043). Thus, studies using different taxonomic criteria indicate
that despite high local diversity, microbial eukaryotes may have only
moderate spatial turnover and hence moderate regional diversity. It
remains possible that z increases between regional and continental
(or global) scales as new and distinct habitats are included or if
dispersal barriers are crossed. Notably, no reliable data currently
exist that would allow global-scale extrapolations of microbial
diversity, and further large-scale quantification of community turn-
over is essential for improving microbial biodiversity estimates.

Many ecologists have treated the entire microbial community as
a “black box” with no spatial structure15. Our data illustrate that
like macroorganisms, microbial eukaryotes are not randomly
distributed, but rather exhibit spatially predictable, aggregated
patterns from local to regional scales. We have shown that by
sampling localities spatially, in such a way that the decline in
similarity with distance can be measured, the slope z of the taxa–
area relationship can be estimated, leading on to estimates of the
total diversity over wide areas. The relationship between biodiver-
sity and area is central to ecology. Despite the ecological importance
and ubiquity of microorganisms, little is known regarding microbial
taxa–area relationships. Our findings offer exciting potential for a
more synthesized view of micro- and macroorganism biodiversity,
and ultimately a means to estimate global biodiversity much more
accurately. A

Methods
Sampling methods and DNA extraction
The study area was within Sturt National Park, New South Wales, Australia. ‘Land system’
mapping undertaken by the New South Wales Soil Conservation Service made this region

ideal for studying the influence of habitat type on microbial beta-diversity. Within the
park, 23 land systems with distinct patterns of topography, soil and vegetation had been
previously mapped. Four of these land systems, representing 42% of the area of the park,
were included in the study. These were Olive Downs (stone-covered rolling downs),
Pulgamurtie (stony uplands), Corner (sand dunes) and Rodges (sand plains). The soils,
geology and vegetation in each land system, and the basis for choosing each land system
type, are described in more detail by ref. 26.

Six locations within each of the four land systems were selected to provide a total of 24
study sites. Each study site comprised a 750 £ 750 m plot with 64 sampling points,
yielding a total of 1,536 sampling points and 1,536 £ 1,535/2 ¼ 1,178,880 sample pairs
(see Supplementary Information). In September/October 1997, at each of the 1,536
sampling points a soil sample of approximately 10 g was taken at a depth of 8 cm below the
ground surface and frozen on site.

Ascomycetes were sampled by collection of their DNA from soil. For DNA extraction,
the total soil sample (10 g) was homogenized using a sterile mortar and pestle before a 400-
mg subsample was taken for DNA extraction using a variant of the FastPrep bead beating
method, as described previously27. The DNA yield was typically from 2.0 to 2.5 mg in a
volume of 160 ml (see Supplementary Information).

ARISA
The primers SSU1758 (5 0 -GTCATTTAGAGGAAGTAAAAGTCG-3 0 , positions 1735–1758
of the SSU rRNA gene, Sacharromyces cerevisiae numbering) and 58S8 (5

0
-CAGAACCAA

GAGATCCGTTGTTG-3
0
, positions 30–8 of the 5.8S rRNA gene, S. cerevisiae numbering)

were used for amplification of the ITS1 region. This primer pair selectively targets
ascomycete fungi in PCR (see Supplementary Information). Amplifications were
performed in 50-ml volumes using 0.5-ml tubes in a Hybaid OmnE thermal cycler with the
following thermal cycle: 94 8C for 3 min (1 cycle); 94 8C for 30 s, 62 8C for 15 s, 72 8C for
60 s (35 cycles); 72 8C for 5 min (1 cycle). The banding profile from individual soil samples
was reproducible when either multiple DNA extractions were performed on subsamples
from the same soil sample, or multiple PCRs were performed on the same DNA sample
(see Supplementary Information). The size range of amplicons was ,170 to ,800 base
pairs (bp), with approximately 80% being in the size range of 200–350 bp. For
electrophoretic separation, a Corbett GS 2000 DNA fragment analyser (Corbett Research)
was used with high-resolution, ultrathin 5% polyacrylamide gels and DNA fragments
detected by laser. Data were analysed using the RFLPscan package (Scanalytics). Size of
DNA fragments was determined using the desmile method in reference to a 50-bp ladder
(Pharmacia) loaded as a standard every eighth lane.

Fragments differing by 1 bp were readily resolved in one gel, and the relative error of
their measured length was 2%. For comparisons between gels, we accounted for this by
sorting the electropherogram data into bins of size Y bin, where X , Y 1 , int(X þ 0.02X),
int(X þ 0.02X) , Y 2 , int(X þ 0.04X), and so on. Here, X denotes fragment length and
int denotes integer value. The observed DNA fragments were resolved from 130 bp to
568 bp, yielding a total of 69 OTU bins. The bin presence/absence data were then used
for subsequent calculations of the Sørensen index, beta-diversity and taxa–area
relationships.

Partial Mantel tests
Several extensions to the basic Mantel randomization test are sensitive to spatial
autocorrelation28. Partial Mantel statistics were therefore estimated using the ‘matrix
permutation’ method, which has been shown to perform the most reliably in the presence
of spatial autocorrelation, being unlikely to reject the null hypothesis falsely when a
conservative critical value is used20,29,30.

Taxa–area relationship estimates
Numbers of OTUs per volume of soil were translated into numbers of OTUs per m2 in a
1-cm-depth layer in the soil horizon by assuming 1 g cm23 soil bulk density. Although
each 400-mg sample was randomly drawn from the surrounding 10 g of soil, equation (2)
holds assuming that equal numbers of individuals were drawn per sample.
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A positive power-law relationship between the number of species
in an area and the size of that area has been observed repeatedly
in plant and animal communities1. This species–area relation-
ship, thought to be one of the few laws in ecology2, is fundamental
to our understanding of the distribution of global biodiversity.
However, such a relationship has not been reported for bacteria,

and little is known regarding the spatial distribution of bacteria,
relative to what is known of plants and animals3. Here we
describe a taxa–area relationship for bacteria over a scale of
centimetres to hundreds of metres in salt marsh sediments. We
found that bacterial communities located close together were
more similar in composition than communities located farther
apart, and we used the decay of community similarity with
distance to show that bacteria can exhibit a taxa–area relation-
ship. This relationship was driven primarily by environmental
heterogeneity rather than geographic distance or plant
composition.

In the 1920s, the empirical relationship between the number of
species and area was generalized4,5 as a power-law, S ¼ cAz, where S
is the number of species, A is the area sampled and c is the intercept
in log–log space. The species–area exponent, z, is a measure of the
rate of change of the slope with increasing area, that is, the rate of
turnover of species across space. Variation in the values for c, and
especially for z, is of interest because it may indicate that different
processes underlie the species–area relationship at different spatial
scales6,7. Although not as well studied as species–area relationships,
other taxa–area relationships (for example, genera–area and family–
area) have been identified for plants and animals; such relationships
conform to the same power-law as species–area relationships,
although they differ in their values of c and z8,9.

Bacteria are among the most abundant and diverse groups of
organisms on earth10 and mediate important ecosystem processes,
including trace gas emissions, decomposition and nitrogen cycling.
Whereas taxa–area relationships have been observed repeatedly for
numerous plant and animal taxa regardless of ecosystem type1, they
have not been explicitly examined for bacteria. Unique aspects of
bacterial biology may prevent bacteria from exhibiting taxa–area
relationships. For example, if most bacteria are not dispersal limited
(for example, owing to small size and environmental hardiness)11

and if they exhibit a high degree of ecological redundancy (for
example, if bacteria are flexible in habitat requirements and phys-
iological abilities, or if they can easily obtain traits through hori-
zontal gene transfer that are necessary for survival in a given
habitat), then one would not expect to observe a taxa–area relation-
ship3.

Here we investigated whether bacteria exhibit a taxa–area
relationship in a New England salt marsh. We conducted our
work in a salt marsh because the spatial ecology of salt marshes is
especially well understood12. There is an extensive literature regard-
ing the main physical gradients in salt marshes, the spatial distri-
bution of plant species and the ecological processes that underlie
this distribution. This information provides an ideal reference point
from which to investigate the spatial distribution of bacteria. We
sampled 1-cm-diameter sediment cores in a nested manner over a
scale of centimetres to hundreds of metres. With the possible
exception of the most extreme and depauperate environments13,
the diversity of bacterial communities is too high to be exhaustively
sampled. Therefore we used a previously refined distance decay
approach14, which uses data on the spatial turnover of taxa, to
determine the taxa–area exponent, z. This approach uses compari-
sons of community composition rather than richness estimations to
describe taxa–area relationships. For comparison, we also estimated
the relationship between the number of plant species and area in this
ecosystem, using the same distance decay approach.

Because a large proportion of microbes cannot be cultured with
current laboratory techniques15, bacterial taxa are often identified
from the sequences of indicator genes extracted from environmen-
tal samples16. We determined the bacterial community composition
of our salt marsh samples by amplifying via the polymerase chain
reaction (PCR), cloning and sequencing a region of 16S ribosomal
DNA (rDNA), the most commonly used indicator gene for bacterial
biodiversity. Because the bacterial diversity of salt marshes is often
very high, we used PCR primers targeting a subset of the bacterial
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