great shape diversity

exkluzivně terestrické skupiny Trentepohliales symbiózy s různými eukaryoty (fungi – lišejníky, ciliata, foraminifera, láčkovci, plži, obratlovci obligátní heterotrofové – pataziti (Prototheca)

pproximately 1,000 to 700 Mya the core Chlorophyta emerged during the ອ Neoproterozoic Era,

Time-calibrated phylogeny of the green algae. (A) The topology of the tree is based on the ML analysis inferred from a concatenated amino acid alignment of 539 nuclear genes

Proportion of genes supporting a sister relationship between Bryopsidales and Chlorophyceae (T1), a sister relationship between the Bryopsidales and remaining Ulvophyceae (T2), and a sister relationship between Chlorophyceae and Ulvophyceae (Bryopsidales excluded) (T3);

Dating of the green line origin – difficult (1000-700 mya or earlier?)

1. fossil Precambrium 1.8 – 2.0 Ga - controversal

Acritarchs

Phycomata

fossil records from late Precambrium (250-540 mya)

Proterocladus (Svalbard)

Cladophora-like? 780 mya

A one-billion-year-old multicellular chlorophyte

abundant millimetre-sized, multicellular and morphologically differentiated macrofossils from rocks approximately 1,000 million years ago. These fossils are described as Proterocladus antiquus new species and are interpreted as benthic siphonocladalean chlorophytes, suggesting that chlorophytes acquired macroscopic size, multicellularity and cellular differentiation nearly a billion years ago, much earlier than previously thought.

Tang et al. 2020 https://doi.org/10.1038/s41559-020-1122-9

Gross morphology of P. antiquus new species from the Nanfen Formation, China.

Nuclear DNA Content Estimates in Green Algal Lineages

- velké genomy vedou ke zvětšování buněk, vodní prostředí představuje výhodu organismy nadnášeny tj. mohou si to dovolit (obrovské b. char)
- dávná atmosféra obsahovala nízké hladiny kyslíku a ozonu, vysoká UV radiace polyploidní (nadbytečné) genomy představovaly evoluční výhodu

Kapraun et al. 2007

Chlorophyta - 2C DNA estimates range from 0.01 to 5.8 pg.

Mitosis type

Graham, str. 407

Cell cycle

Chlorophyta: mostly haplontic cycle (in the whole cycle, zygotes are the only diploid cell)

Haplo-diplontic cycle developed repeatedly Ulvophyceae (order Ulvales), Cladophorales, Bryopsidales, Trentepohliales (some species)

Asexual reproduction

single-celled mostly single-nuclear mitospores (as a product of mitosis)

- zoospores
- aplanospores
- hemiaplanospores
- autospores

Asexual reproduction

Chlorococcum – hemiaplanospores (pulsující vakuoly, stigma)

Hydrodictyon - zoospores

Chlorococcum - zoospores

autospores Kirchneriella

Sexual reproduction

- izogamy (hologamy)
- anizogamy
- oogamy

Sexual reproduction anizogamy

Sexual reproduction

oogamy

Chlorophyceae

monophyletic

Class: Chlorophyceae

Basic Characteristics:

- •Various types of thalli (flagellated, coccoid, sarcinoid, filamentous, siphonous)
- •Cell wall of flagellates glycoprotein-based; others polysaccharide-based (mostly cellulose)
- •Zoids with 2 or 4 flagella, cross-arranged microtubule roots, DO or CW orientation of basal bodies; stephanokont zoospores in Oedogoniales
- •Closed mitosis, spindle does not persist into telophase, transverse septum (cleavage furrow or cell plate), phycoplast, plasmodesmata
- •Asexual reproduction by forming zoospores, autospores, and aplanospores
- •Sexual reproduction, haplontic life cycle, often forming thick-walled hypnozygotes, isogamy, anisogamy, oogamy
- •Almost exclusively freshwater or terrestrial
- •Algaenans acetate-resistant biopolymers

Algaenans – acetoresistent biopolymers

alifatic hydrocarbon chains, crosslinked

Desmodesmus, Tetraedron, Pediastrum, Coelastrum, Sorastrum, hypnozygotes Chlamydomonas, zygospores Dunaliella, akinets Haematococcus

Adaptive mechanism Fosilized remnants of the cell wall in palinological samples

Pseudopediastrum boryanum

A Phylogenetic trees. (A): Neighbor-joining tree based on subclade profiles. (B): Tree produced by MrBayes.

Conclusions: Our phylogenomic study advances our knowledge regarding the circumscription and internal structure of the chlamydomonadales, suggesting that a previously unrecognized lineage is sister to the Sphaeropleales.

Lamieux et al. 2015

Phylogeny of chlorophycean taxa inferred using nucleotide data sets assembled from 69 protein-coding and 29 RNA-coding genes

Chlamydomonadales

Nakada et al. 2008 (Mol. phyl. evol.)

Example of classification based on PhyloCode (vs. International Code of Botanical Nomenclature) 21 well-supported clades)

PhyloCode

PhyloCode – a set of formal rules – naming of entire monophyletic clades. The content of a taxon is based on phylogeny (ancestors and descendants) – a clade is defined as an ancestor and all its descendants – classification based on a phylogenetic hypothesis.

Class: Chlorophyceae

How does Chlamydomonas swim?

Chlamydomonas reinhardtii – a model of flagellated plant cellHow does the cell move?How does it respond to light?How do they recognize each other?How do they react to changes in environmental conditions?

Chlamydomonas 500 species described

Phototaxis in *Volvox rousseletii* Ueki et al. 2010

(b, e, g, i) normalbeating mode(c, f, h, j) reversebeating mode

How does *Volvox* swim?

Chlamydomonas

Ch. reinhardtii

Sanguina nivaloides (Chlamydomonas nivalis)

long-lasting snow fields e.g. Alaska glaciers

watermelon snow

Harding Icefield 1813 km²

Ch. nivalis absorb solar energy, heating themselves and the snow around them – reduces snow's reflectivity by 13%

Estimated snow melt Harding Icefield Alaska (2013)

Snow algae accounts for about 17% of the annual melt

Polytoma

Heterotrophic variation to *Chlamydomonas* leukoplasts instead of chloroplasts

At the bottom of the pools in detritus

Polytoma

Dysmorphococcus

Chlamydomonas - podobný protoplast, lorika inkrustovaná solemi manganu a železa, sladkovodní plankton, ne hojné populace

Evolution of multicelularity The classical "volvocine lineage hypothesis"

Kirk, 2005

6 genera, gradually diverging (increase in cell number, size, extracellular matrix-to-cell volume ratio, and tendency to form sterile somatic cells).

central-to-peripheral polarity

Each reproductive cell or gonidium undergoes successive cell divisions to form a concave-to-cup-shaped embryo composed of a single cell layer

Pandorina

• cenobium ve tvaru koule; anterior-to posterior (AP) polarity, úplná inverze

16-celled

Eudorina

16 or 32-celled

each cell undergoes several rounds of division to form plakeas, which then invert to form daughter colonies

Pleodorina

> 500-celled

а

Předo-zadní polarita Syntéza extracelulární matrix

Volvox

Fylogenetická studie na základě 5 genů

A recent molecular phylogeny of *Chlamydomonas* and its relatives indicates that *C. reinhardtii* shared a common ancestor with *V. carteri*

Společné znaky:

pohl. rozmn. —hypnozygoty

haplontní ž.c.

Volvox carteri embryogeneze

V. carteri asexual reproduction and development, can be compared with the processes of the ancestral development of Chlamydomonas into V. carteri.

System of cytoplasmatic bridges

Každá buňka je spojena s okolními průměrně 25 můstky Hnací silou inverze – změna tvaru buněk spojených m. Rotace bazálních tělísek

Increased volume of extra cellular mathrix (ECM)

genetic regulation diferenciation to somatic and reproductive cells

C. reihardtii – 2 morfologicky a chemicky odlišné vrstvy BS

gls geny – způsobují asymetrické dělení. Ve velkých buňkách **lag geny** blokují vývoj somatických znaků (bičíky stigma). V malých buňkách **regA geny** blokují reprodukci (represe vývoje chloroplastu) – somatické buňky

Volvox – sexual reproduction Produkce samčích gamet – heat shock??

Chlorococcum

Chlorococcum

Haematococcus

Pioneer alga in shallow ephemeral pools Haematococcus

lithotelms

stock and horse tanks

Do you recognize this place?

Haematococcus

Haematococcus

Velkoplošné kultivace – uzavřené fotobioreaktory v Negevské poušti

astaxantin

Stephanosphaera

http://www.mikroskopie.de/mikroforum_2/index.php?topic=5659.0

Dunaliella

no contractile vacuoles – synthesis and degradation of glycerol

 β - carothene production

Pink Lake – hypersaline lake (Australia)

Sea salt salinas with halobacteria and *Dunaliella*, San Francisco Bay, California, 1999 **Phylogeny of Oedogoniales, Chaetophorales and Chaetopeltidales (Chlorophyceae): inferences from sequence-structure analysis of ITS2** *Ann Bot (2012) 109(1): 109-116*

4 bičíkaté zoospory, plasmodesmata v buněčných přehrádkách. Degradace BS při uvolňování zoospor se účastní druhově specifické autolyziny Caisová et al. 2011

Chaetophora

submerged surfaces

Polyphyly of *Chaetophora* and *Stigeoclonium* within the Chaetophorales (Chlorophyceae)

1cm

algaebase

the ends of fillaments multicellular pointed "hairs"

Stigeoclonium

Hans Sluiman: Stigeoclonium at night

consist of a prostrate system which anchors the plant firmly to rocks or other substrates, and erect branched filaments which are only one cell wide but can be several cm long.

Fritschiella

terrestrial alga

These morphological features are an example of a parallel evolutionary adaptation to terrestrial life with the land plants.

attacherd to rocks in cold running water

0.01 substitutions/site

Chaetopeltidales

Sanchez-Puerta, et al 2006. Pseudulvella

Prasinophyceae

Chaetopeltidales

Disc- shaped thalli from *Pseudulvella americana* (A) *Chaetopeltis orbicularis* (B)

O'Kelly, C.J., Watanabe, S. & Floyd, G.L. (1994).

Pseudulvella

Sanchez-Puerta, Leonardi, O'Kelly, & Caceres, (2006).

includes epiphytic or epizoic, freshwater, or marine green microalgae

py s invaginací cytoplasmy

from rivers, lakes, and ponds both as an epiphyte on filamentous algae and twigs, and from the plankton.

UTEX LB #422 Chaetopeltis sp.

400X

When grown in culture, the alga exhibits morphological variations that depend upon the type of substratum on which it is growing

© UT-Austin

Dicranochaete

Dicranochaete is a green coccoid alga with a spiny cap and a long branched seta, that was described more than 100 yr ago from *Sphagnum* 'leaves' in peat bogs,

Caisová 2016

Oedogoniales

Oedocladium

branched filaments

Terrestrial, or occasionally free-floating in freshwater habitats.

Each cellular division creates a new ring on the cap cell

Oedogonium

asexual rproduction – stephanokont zoospores

stephanokont zoospores

http://www.youtube.com/watch?v=Oh0E-Afl0_A
Oedogonium

Masivní pás tvoří kruh na povrchu zoospory, spojuje bazální tělíska 40 bičíků, těsně pod PM

Oedogonium

macrandrous species – anteridia directly from vegetative cells

Oedogonium

spermatogenesis *O.cardiacum* macrandrous species

oogonium with a pore in the oogonial wall (microropyle)

Bulbochaete

Bulbochaete

colorless bulbous-based hair cell (setae)

Bulbochaete

oogonium with micropyle

thick walled oospore