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A flurry of recent publications have challenged consen-
sus views on the tempo andmode of plastid (chloroplast)
evolution in eukaryotes and, more generally, the impact
of endosymbiosis in the evolution of the nuclear
genome. Endosymbiont-to-nucleus gene transfer is an
essential component of the transition from endosym-
biont to organelle, but the sheer diversity of algal-derived
genes in photosynthetic organisms such as diatoms, as
well as the existence of genes of putative plastid ancestry
in the nuclear genomes of plastid-lacking eukaryotes
such as ciliates and choanoflagellates, defy simple
explanation. Collectively, these papers underscore the
power of comparative genomics and, at the same time,
reveal how little we knowwith certainty about the earliest
stages of the evolution of photosynthetic eukaryotes.
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Introduction

With its roots dating back to the dawn of the last century,(1)

endosymbiotic theory has been part of the lexicon of

mainstream biology for more than 30 years.(2,3) Mitochondria

and plastids clearly evolved from bacterial endosymbionts

(alpha-proteobacteria and cyanobacteria, respectively) and

tremendous progress has been made towards a compre-

hensive understanding of the evolution of these textbook

eukaryotic organelles.(4,5) Much remains to be understood but

one thing we know for certain is that the genetic integration of

endosymbiont and host involves the massive flux of genes

from the former to the latter, a process known as

endosymbiotic gene transfer (EGT) (Fig. 1).(6,7) Simply put,

EGT is the reason why contemporary mitochondrial and

plastid genomes encode at most a hundred or so of the

thousand plus proteins they need for proper function. The bulk

of their proteomes are in fact nucleus encoded and targeted to
*Correspondence to: J. M. Archibald, The Canadian Institute for Advanced

Research, Integrated Microbial Biodiversity Program, Department of Bio-

chemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia,

Canada B3H 1X5.

E-mail: john.archibald@dal.ca

BioEssays 31:1273–1279, � 2009 Wiley Periodicals, Inc.
the organelles post-translationally via complex protein import

machineries.(5,8)

Straightforward as it may be, a simple gene transfer protein

re-import model is insufficient to fully account for the

complexity of eukaryotes and their endosymbiotically derived

organelles, for two main reasons. First, by no means all of the

nucleus-encoded proteins that function in mitochondria and

plastids are of endosymbiotic origin: numerous plastid-related

processes have now been shown to involve proteins of diverse

evolutionary origins (e.g. see Refs(9–15)). Second, and

conversely, genomic analyses show that the cyanobacterial

contribution to the proto-algal nuclear genome appears to

have been much greater than simply donating genes whose

products faithfully home to their compartment of origin. Some

estimates, such as a 2002 analysis of the nuclear genome of

the flowering plant Arabidopsis,(16) peg the cyanobacterial

‘footprint’ in the nuclear genome at almost 20% of all genes.

Remarkably, fewer than half of the cyanobacterial-derived

genes in Arabidopsis were predicted to encode plastid-

targeted proteins, with the majority instead predicted to

function in everything from transcription to cell division. The

precise numbers vary depending on organism and analytical

method (e.g. see Refs(17–20)) but, overall, the picture

emerging is one of extensive genome and proteome

mosaicism, whereby the proteins functioning in a given

eukaryotic cellular compartment are of mixed ancestry.

Here we discuss recently published articles that push the

envelope of nuclear genome mosaicism even further and

complicate our interpretation of the evolution of plastids in a

large fraction of algal diversity. We also discuss several recent

papers purporting to detect a genomic footprint of past

endosymbioses in the genomes of plastid-lacking eukaryotes,

and the challenges associated with such interpretations.
Red and green algal footprints in
diatom genomes

The first set of papers relate to the evolution of plastids in

diatoms, ubiquitous marine microbes of profound environ-

mental significance.(21) The ancestor’s of diatoms, like many

other algae, acquired photosynthesis secondarily by engulfing
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Figure 1. Endosymbiosis and gene flow in photosynthetic eukar-

yotes. Diagram depicts movement of genes in the context of primary

and secondary endosymbiosis, beginning with the cyanobacterial

endosymbiont (CB) that gave rise to modern-day plastids. Acquisition

of genes by horizontal (or lateral) gene transfer is always a possibility,

and such genes can be difficult to distinguish from those acquired by

endosymbiotic gene transfer (EGT). CB, cyanobacterium; HGT, hor-

izontal gene transfer; MT, mitochondrion.
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a distantly related photosynthetic eukaryote whose plastid

evolved directly from the cyanobacterial plastid progenitor.

Inferring how many times the ‘primary’ plastids of red algae,

green algae (and plants) and glaucophyte algae evolved into

‘secondary’ plastids is an area of active investigation and

debate.(22–25) No secondary plastids derived from glauco-

phytes are known, but both green and red algae have, each at

the very least on one occasion, been captured and converted

into a secondary plastid (Fig. 2). This process involves a

second round of EGT, this time from the endosymbiont

nucleus to that of the secondary host (Fig. 1), as well as the

evolution of another protein import pathway built on top of that

used by primary plastids.(5,26) For these reasons, successful

integration of a secondary endosymbiont is thought by many

to be difficult to achieve, and secondary endosymbiosis is

thus usually invoked only sparingly.

Secondary plastids of green algal origin occur in

euglenophytes and chlorarachniophytes, whereas most

plastids in so-called ‘chromalveolates’ are derived from red

algae. Chromalveolates include cryptophytes, haptophytes,

dinoflagellates, apicomplexans, the newly discovered coral

alga Chromera velia and stramenopiles (or heterokonts), the

latter being the group to which diatoms belong (Fig. 2). The

chromalveolate hypothesis was put forth as an attempt to
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explain, in themost economical way, the origin and distribution

of the chlorophyll c-containing plastids found in many of the

above-mentioned lineages: chromalveolate taxa are hypothe-

sised to stem from an ancestor that emerged as a result of an

ancient union between an as-yet-obscure non-photosynthetic

eukaryote and a red algal endosymbiont.(23,27)

As would be expected from their plastid genomes, which

are demonstrably red algal in nature,(28–32) the complete

nuclear genomes of the diatoms Phaeodactylum tricornutum

and Thalassiosira pseudonana revealed the presence of at

least 170 genes presumably introduced by EGT from the red

algal endosymbiont.(33) Where investigated, genes of red

algal ancestry are also readily apparent in the nuclear

genomes of a wide variety of other photosynthetic chromal-

veolates (e.g. see Refs(34–37)). What has come as a surprise,

however, is the presence of genes showing green algal

ancestry in chromalveolate nuclear genomes. For example,

the enzyme phosphoribulokinase (a critical component of the

plastid-localised Calvin cycle) is in chromalveolates encoded

by a nuclear gene more closely related to green algal and

plant genes than to red algal genes: a horizontal (or lateral)

gene transfer (HGT) from a green alga into a chromalveolate

ancestor was suggested as the explanation.(38) More recently,

the list of ‘green’ genes in chromalveolates has been greatly

expanded. First, Frommolt et al.(39) analysed the phylogeny of

carotenoid biosynthetic enzymes and found that in chromal-

veolates five of them appear to have been recruited from

green algae. Second, Becker et al.(40) investigated the

evolutionary history of non-cyanobacterial genes present in

the ancestor of all photosynthetic eukaryotes, specifically

those coming fromChlamydiae. They concluded that ten such

genes were passed into diatoms from red algae by secondary

endosymbiosis, whereas another ten chlamydial genes in

diatomswere donated by green algae. These findings led both

teams to consider the possibility that the green genes speak

to the existence of a chromalveolate ancestor that harboured

a green algal endosymbiont.

Most recently, a comprehensive phylogenetic analysis of

genes in the nuclear genome of the diatoms T. pseudonana

and P. tricornutum revealed more than 1,700 genes believed

to be derived from a green alga.(41) Amazingly, ‘green’ genes

in diatoms outnumber ‘red’ genes by more than three-to-one.

In addition, the authors found that a considerable fraction of

the diatom ‘green’ genes are shared with other chromalveo-

late lineages, notably including more than 400 genes in

common with haptophytes. What do these results mean? At

face value, the data provide compelling evidence for the

presence of a cryptic secondary endosymbiosis involving a

green alga early in the evolution of chromalveolates, prior to

red algal plastid acquisition (Fig. 2). The study is, however, not

without potentially serious technical limitations (see Ref.(42)

for discussion) and the results are open to interpretation.

Below we discuss some additional pitfalls of this study that
BioEssays 31:1273–1279, � 2009 Wiley Periodicals, Inc.
complicate the evidence for the hypothesised green algal

endosymbiosis early in the evolution of chromalveolates.
Endosymbiosis and the evolving tree of
eukaryotes

The chromalveolate hypothesis has long been controversial,

in part because of the failure of traditional phylogenetic

markers to recover the predicted chromalveolate clade (see

Refs(43–45) for recent analyses). However, the recent explo-

sion in partial and complete genomic data available from

diverse eukaryotes has made it possible to perform

phylogenomic analyses based on 100 or more genes,

resulting in unprecedented resolution of the eukaryotic

tree.(46–53) Such analyses have revealed unsuspected

relationships between specific subsets of ‘traditional’ chro-

malveolate lineages and non-chromalveolate taxa (Fig. 2).

For example, the ‘SAR’ clade(47) is comprised of strameno-

piles and alveolates (both chromalveolates) plus Rhizaria, the

latter originally conceived as an independent eukaryotic

‘supergroup’.(54,55) Hacrobia(56) comprise haptophytes and

cryptomonads (the remaining ‘traditional’ chromalveolates),

plus a growing list of previously orphan lineages, including

katablepharids,(45,56,57) telonemids,(53,58) and centrohe-

lids.(53) Although the position of SAR and Hacrobia on the

eukaryotic tree is still equivocal, at least some phylogenomic

analyses show them as mutual sister branches,(47,49,53)

suggesting that chromalveolatesmay indeed form a coherent,

although now greatly expanded, supergroup.

At the same time, however, the latest phylogenomic

analyses indicate that chromalveolates are potentially more

closely related to Archaeplastida (¼Plantae) – the lineage

from which they acquired their red (and green?) secondary

plastid – than they are to any other eukaryotes. This

chromalveolate-Archaeplastida ‘megagroup’(50) is consis-

tently recovered, often with considerable statistical sup-

port.(47,50,52,53) In addition, the monophyly of Archaeplastida

is still contentious(59–63) and it is possible that some

chromalveolate lineages,(52) or chromalveolates as a

whole,(60,64) actually nest within Archaeplastida, specifically

as sister to green algae and plants (Chloroplastida). Moustafa

et al.(41) dismiss this possibility, but if true, genes correspond-

ing to the chromalveolate secondary host lineagewould in fact

be expected a priori to branch close to homologues from

Archaeplastida, a pattern that has hitherto generally been

interpreted as evidence for EGT/HGT from red or green algae

into chromalveolates.(41,65) The best candidates for chromal-

veolate genes obtained by EGT/HGT are those nested with

reasonable support within red or green algae. Unfortunately, it

is not clear from the report of Moustafa et al. how many of the

>1,700 presumably ‘green’ genes in diatoms show this

pattern.
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An additional uncertainty involves an at-present inability to

effectively discriminate between alternative scenarios for how

the foreign ‘green’ genes would have come to reside in the

genomes of diatoms and other chromalveolates. The problem

is the very ‘patchy’ sampling of genomes currently available

from the Chloroplastida lineage, which is restricted to three

major groups: land plants, volvocalean chlorophytes (namely

Chlamydomonas and Volvox) and the order Mamiellales of

the paraphyletic class ‘Prasinophyceae’ (represented by

Ostreococcus spp. and Micromonas spp.). It is therefore

possible that some of the ‘green’ genes that appear to be

shared by distant chromalveolate lineages (e.g. the >400

genes shared by diatoms and haptophytes) in fact exist as

clusters of exclusively chromalveolate genes only because

intervening green algal lineages have not yet been sampled. It

is likely that when additional green algal, and in particular,

prasinophyte, genomes are sequenced, some genes of this

category will prove to have been independently introduced,

presumably via HGT, into different chromalveolate lineages

from different sources, rather than as the result of a unique

acquisition by an early chromalveolate (Fig. 2).
Algal genes in plastid-lacking eukaryotes:
How many and how did they get there?

Even if the notion of a cryptic green algal endosymbiosis in

chromalveolates proves true, it need not necessarily mean

that the endosymbiosis occurred before extant chromalveo-

lates radiated. The counterargument is the same as that often

levelled against the traditional chromalveolate hypothesis, i.e.

the notion of a single red algal endosymbiosis in the common

ancestor of all chromalveolate taxa. Although there is now a

considerable body of evidence supporting the common

ancestry of chromalveolate plastids from red

algae,(23,26,28,30–32,66) a significant number of taxa known to

be related to individual plastid-bearing chromalveolate

lineages appear to – or are known to – lack this plastid

(Fig. 2). Multiple secondary losses of the red algal-derived

secondary plastid must therefore be invoked if a plastid was

truly an ancestral feature of chromalveolates. Some research-

ers see this requirement as a serious complication and

suggest alternative explanations, including engulfment of a

red algal endosymbiont by a specific chromalveolate lineage

(cryptophytes or a common ancestor of cryptophytes and

haptophytes) followed by spread of the secondary plastid

(and nuclear genes essential for its function) into additional

chromalveolate lineages via tertiary or even quaternary

endosymbioses.(25,67) If such endosymbioses indeed took

place, they could in principle also serve as routes for the

horizontal movement of ‘green’ genes from one chromalveo-

late lineage to another.
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A potentially powerful way to discriminate between these

competing explanations is to look for the genomic footprints of

past endosymbioses in plastid-lacking chromalveolates in the

same way that Moustafa et al. searched for green genes in

diatoms. An early example was an analysis by Huang et al.(68)

of the genome of Cryptosporidium, an apicomplexan parasite

related to the Plasmodium and Toxoplasma, both of which

possess remnant non-photosynthetic plastids.(5) Cryptospor-

idium does not possess a plastid but its genome was found to

possess 7 genes identified as being of ‘plastid/endosymbiont’

origin, as well as 24 prokaryotic genes believed to be the

product of HGT.(68) More recently, algal or ‘plastid-like’ genes

have been found in the genome of the plastid-lacking

oomycete stramenopile Phytophthora,(69) as well as in the

ciliate genome.(65) [Interestingly, only 11 red algal-like genes

in Phytophthora appear to be shared with diatoms,(33) to

which they are specifically related (Fig. 2), and how many

‘green’ genes in diatoms are shared with Phytophthora is

unclear from the results of Moustafa et al.(41)] Such results

are often cited as evidence for secondary plastid loss in

these lineages (e.g. see Refs(23,70,71)), but how confident

should we be?

In the case of ciliates, it is important to consider

whether the 16 algal/plastid genes identified by Reyes-

Prieto et al.(65) rise above the background of what would

be expected as a result of HGT, something which would

not be surprising for a group of organisms known to

harbour symbiotic algae (e.g. see Ref.(72)) – and thus

presumably exposed to DNA from lysed algal prey on a

regular basis – and for which examples of HGT are

already known.(73) The same general methodological con-

cerns raised above in the case of the diatom green genes

(e.g. patchy genomic sampling) apply to the ciliate

analyses, as well as to the discovery of a handful of

cyanobacteria-related genes in some plastid-lacking non-

chromalveolate eukaryotes, including the heterolobosean

Naegleria and the choanoflagellate Monosiga.(74) Whether

the genomic footprints described in the above-mentioned

organisms truly speak to the past existence of plastids, or

are the result of algal/cyanobacterial genes coming into

the genomes by HGT, is, in our view, an open question. Stiller

et al.(75) have recently argued for rigorous testing of a priori

hypotheses in such cases, and have performed a compre-

hensive re-assessment of cyanobacterial/algal genes in

the nuclear genomes of two Phytophthora species. Their

results suggest that, despite previous suggestions,(69)

the number of algal-like genes in these genomes is not

significant and does not rise above background, i.e. when

compared to ‘algal’ genes found in the reference genome of

the plastid-lacking amoebozoans Dictyostelium and Enta-

moeba, and when diatom genomes are used as a ‘positive

control’.(75)
BioEssays 31:1273–1279, � 2009 Wiley Periodicals, Inc.
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Future directions

The notion that two consecutive endosymbioses gave rise to a

major and highly successful eukaryotic assemblage is a

provocative working hypothesis that will undoubtedly inspire

further intensive investigations. Whether it is ultimately

corroborated or refuted depends on a number of critical tests

yet to be performed. Most importantly, a far better sampling of

genomes of both the plastid donor lineages (i.e. green and, in

particular, red algae) and chromalveolate taxa is needed to

produce more reliable gene trees and to more confidently

interpret gene presence/absence data. It will be important to

search for green and/or red algal genes in the genomes of

poorly studied organisms such as Telonema, centrohelids,

katablepharids, cryptophytes and Rhizaria (Fig. 2) using

rigorous methodologies, and to re-assess previous analyses

in light of this new information. Fortunately, the first

cryptophyte and rhizarian genomes will soon be available

(Guillardia theta and Bigelowiella natans, respectively),

thanks to the Joint Genome Institute’s Community Sequen-

cing Programme. In the case of the chlorarachniophyte

rhizarian B. natans, inferring the origin of its genes may prove

especially challenging: under the model proposed by

Moustafa et al.,(41) the chlorarachniophyte lineage would

have hosted no fewer than three different secondary

endosymbionts, i.e. the hypothetical prasinophyte-related

green alga, the ‘classical’ red algal endosymbiont purported

to have been present in the ancestor of all chromalveolates

and finally the green algal ancestor that gave rise to the

secondary plastid that chlorarachniophytes currently possess.

We also need a more detailed picture of the actual

functions of the genes acquired in the context of the putative

ancient green algal endosymbiosis. For example, what

proportion of the ‘green’ genes in chromalveolates has

contributed innovations to the ancestral host genome and

what proportion represents replacements of original host

genes by foreign genes with the same function? Of the

>1,700 ‘green’ genes in diatoms, only �14% were predicted

to encode plastid-targeted proteins, yet diatoms appear to

share many more ‘green’ genes with their distant photosyn-

thetic relatives the haptophytes than with the more closely

related, aplastidic and/or non-photosynthetic organisms such

as apicomplexans and ciliates.(41) Does this mean that,

although themajority of proteins encoded by the ‘green’ genes

function outside the plastid, they still serve processes related

to photosynthesis, for example cytosolic or mitochondrial

metabolic pathways directly connected to pathways taking

place within the plastid?

Interestingly, a potential unrecognised connection between

chromalveolates and prasinophyte green algae may actually

have been known for a long time. A feature that differentiates

the chromalveolate red algal-derived plastids from those of

free-living red algae is the presence of several forms
BioEssays 31:1273–1279, � 2009 Wiley Periodicals, Inc.
of chlorophyll c.(76,77) While little is currently known about

chlorophyll c biosynthesis, it is potentially significant that

chlorophyll c-like pigments have been reported from some

prasinophyte green algae.(76,78) An evolutionary connection

between these pigments and chlorophyll c in chromalveolates

was previously considered implausible,(78) but in light of the

significant prasinophyte genomic footprint in diatoms and

other chromalveolates discussed here, it is possible that at

least some enzymes of chlorophyll c biosynthesis in

chromalveolates were obtained from the elusive prasinophyte

endosymbiont. This is just one of many questions that

deserves an answer as the genomes continue to pour in and

the biology of the organisms in which they reside is better

understood. Despite all the above-mentioned uncertainties,

few would argue against the notion that the degree of

mosaicism in the genomes of modern-day eukaryotes vastly

exceeds that which could have been predicted just a few years

ago, and the picture is likely to grow even more complex in

the years to come.
Acknowledgments: We thank J. W. Stiller for sharing

unpublished data and W. Martin for interesting discussion.

We apologise to colleagues whose work could not be cited

due to space limitations. M.E. is supported by research

project No. 21620828 of Czech Ministry of Education.

J.M.A. acknowledges research support from the Canadian

Institutes of Health Research and the Canadian Institute for

Advanced Research.
References
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