Molecular markers in plant systematics and population biology

3. Isoenzyme analysis

Tomáš Fér

tomas.fer@natur.cuni.cz

What are enzymes ?

- proteins more than 100 aminoacids connected with peptide bond
- function catalysts of chemical processes (enable substrate transformation)
- more than 5,000 enzymes known
- isoenzymes (isozymes) enzymes with the same metabolic function, catalyzing the same reaction, but with different (primary) structure
- allozymes products coded by different alleles of the same gene (locus) – very similar to each other

Enzyme structure

- aminoacids positive, negative or neutral charge (depends on pH)
- primary structure sequence of aminoacids, determined genetically
- secondary and tertiary structure (molecule shape) influenced by molecule size, charge and polarity (hydrophility) – stabilized by covalent disulfide bonds, non-covalent hydrogen bonds, ionic bonds and hydrophobic interactions
- quarternary structure formation of functional enzyme from more subunits (monomeric, dimeric, tetrameric enzymes)

What we get with isoenzyme analysis?

- geneticaly based (inherited) differences
 - i.e., differences in the primary structure
- differences are reflected by
 - total charge of the molecule
 - shape and size of the molecule
- i.e., different mobility of particular isoenzymes in the electric field

How to study isoenzymes

1. extraction

- from the fresh material
- homogenization with extraction buffer
- centrifugation
- supernatant can be stored frozen at -70 °C
- 2. separation electrophoresis
- 3. detection

Electrophoresis

- separation of molecules according to their mobility in the electric field
- majority of aminoacids negative charge in alkalic pH
- molecules move to anode (positively charged electrode)
- mobility is influenced by
 - shape and size of the molecule
 - molecule charge
- sensitive method separation of molecules differing by one charge unit

Electrophoresis – techniques

• vertical – polyacrylamide gels

horizontal – starch gel

Protein detection on the gel

- nothing visible on the gel
- unspecific staining of all proteins (*Coomassie Brilliant Blue*)
- detection of enzymatic activity specific staining – based on the reaction that is catalyzed by the particular enzyme
- different types of detection
 - coloured product coloured band at the position of enzyme
 - coloured substrate gel destained at the position of enzyme
 - mixed reaction product not coloured but made visible with other reaction(s)

Examples of enzyme detection

LAP

leucin aminopeptidase

superoxid dismutase

SOD

Detection of enzymatic activity

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

Enzyme classification

- 1. oxidoreductases electrone transfer (oxidase, dehydrogenase)
- *transferases* transfer of functional group
 (monosacharide, phosphate, methyl, amine, acetyl...)
- 3. hydrolases hydrolytic cleavage of C-O, C-N or C-C bond
- 4. *lyases* cleavage of C-O, C-N or C-C bond
- 5. isomerases change of geometric structure
- 6. ligases linkage of two molecules

Enzyme example

• E.C. 1.1.1.1 : alcohol dehydrogenase

1 Oxidoreductases
 1.1 Acting on the CH-OH group of donors
 1.1.1 With NAD⁺ or NADP⁺ as acceptor
 1.1.1.1 alcohol dehydrogenase

http://www.brenda-enzymes.info/

What we see on the gel

- *zymogram* banding pattern
- isozyme bands zones of enzymatic activity
- assumptions for interpretation
 - different mobility reflects difference in DNA (difference is inherited)
 - homology of comigrating bands
 - codominant expression
 - all alleles are exprimated
 - homozygotes and heterozygotes can be distinguished
 - quarternary structure known

Isozyme data evaluation

simple comparison of banding pattern

• entire congruence – clone identification

• limited variation...

Allelic evaluation of isozymes

- 1. determination of number of loci
 - different loci isozymes might originate from different compartments (e.g., cytosol, chloroplast etc.)
- 2. determination of number of alleles per locus
 - codominance
 - quarternary structure
 - ploidy level

isozymes – catalyze the same reaction

allozymes – products (alleles) of the same gene

Quarternary structure

number and arrangement of subunits into the functional enzyme

dimer

tetramer

Evaluation of heterozygotes at the locus

monomer

Leucine Aminopeptidase (LAP)

Phosphoglucomutase (PGM)

Shikimat Dehydrogenase (SKDH)

dimer

Amino Aspartate Transferase (AAT)

Alcohol Dehydrogenase (ADH)

Carboxylesterase (EST)

Glucose-6-Phosphate Isomerase (**GPI**)

Isocitrate Dehydrogenase (IDH)

Malate Dehydrogenase (MDH)

6-Phosphogluconate Dehydrogenase (**6PGDH**)

Superoxide Dismutase (SOD)

tetramer

AB	BB
	AB

Glucose-6-Phosphate Dehydrogenase (**G6PDH**)

Malate Dehydrogenase NADP+ (ME)

Dimeric enzymes

homozygote

heterozygote

homozygote

7

LAP – monomeric enzyme Sparganium erectum – diploid

6-PGDH – dimeric enzyme *Arceuthobium* (Viscaceae) – diploid

http://www.plant.siu.edu/PLB479/IsozymeTechniques/GelExercise.html

Tetraploid organisms

- autotetraploids
 - 2/2 heterozygotes AAaa
 - 2 types of 3/1 heterozygotes AAAa, Aaaa
 - tetrasomic inheritance all combinations are equally possible
- allotetraploids
 - chromozomal and genetic differentiation of two parental genomes
 - *disomic inheritance* fixed heterozygosity AABB

Zymogram of tetraploid organisms

Allopolyploids

glucose-6-phosphate isomerase (PGI, E.C. 5.3.1.9)

gel photo

Mercurialis annua

interpretation of band presence and approximate intensity

allelic interpretation

Problems

- allelic dosage
 (→ ffmmmm or fmmmmm?)
- isoloci assignment (due to disomic pattern)
 (→ genotype ff, mm, mm, or fm, fm, mm?)

Obbard D. J. et al. 2006: Simple allelicphenotype diversity and differentiation statistics for allopolyploids. Heredity 97:296-303.

Isoenyzme analysis

pros

- fast method possible to analyse many individuals simultaneously
- cheap technique (in comparison with DNA techniques) - ?
- data comparable among different studies
- codominant marker
- estimate allelic dosage in polyploids
- slow mutation rate (advantage against microsatellites)
 - 10⁻⁷ /locus*year

cons

- living material needed
- limited variability low number of alleles per locus – often 2-4 only
- variability in coding part of the genome only
- detected variability
 - 10% of variability of DNA (Nei 1987)
 - only 1/3 of nucleotide substitutions is reflected by aminoacid changes
 - and only ca. 25% is detectable with electrophoresis

Evaluation of codominant data

- number of alleles per locus A
- allelic richness
 - expected number of different allele
 - standardized for number of samples
- percentage of polymorphic loci P
- heterozygosity
 - *observed H*_o (proportion of heterozygotes)
 - expected H_e
 - if Hardy-Weinberg equilibrium expected
 - = gene diversity D

$$D = 1 - \frac{1}{m} \sum_{l=1}^{m} \sum_{i=1}^{k} p_{i}^{2}$$

- *m* number of loci
- *k* number of alleles per locus
- p_i frequency of *i*-th alelle from *k*
- probability that particular individual is heterozygote

Interpopulation variation

- coefficient of *genetic distance* or *genetic identity*
 - Nei's coefficient

- Rogers' genetic distance D_R typical for isozymes
- dendrogram based on the pairwise similarity matrix

	S001	S006	S012	S008
S001	1.000	0.811	0.811	0.778
S006	0.811	1.000	0.977	0.876
S012	0.811	0.977	1.000	0.898
S008	0.778	0.876	0.898	1.000

- UPGMA
- neighbour-joining (NJ) minimalizes tree length

F-statistics (Wright 1951)

- partitioning of genetic variation
 - I-individual, S-subpopulation, T-total

- **F**_{IS} level of inbreeding (*inbreeding coefficient*)
- **F**_{st} subpopulation differentiation
- *F*_{IT} global H-W disequilibrium (deviation from random mating)
- 1- $F_{IT} = (1 F_{IS})(1 F_{ST})$
- parameters estimation (Weir & Cockerham 1984)
 - correction for number of individual and populations
 - $F (\sim F_{IT}), \theta (\sim F_{ST}), f (\sim F_{IS})$

F_{IS} – level of inbreeding (*inbreeding coefficient*)

- -1 completely outbred population, i.e., no homozygotes
- 0 no inbreeding
- +1 completely inbred population, i.e. no heterozygotes

F_{sT} – subpopulation differentiation

 0 – no genetic population structure (same allele frequencies in all populations)

F_{sT} – subpopulation differentiation

 0 – no genetic population structure (same allele frequencies in all populations)

Example of F-statistics calculation

	Genotype							
	AA	Aa	aa	Ν	р	Но	Не	F
population 1	125	250	125	500	0.5	0.5	0.5	0
population 2	50	30	20	100	0.65	0.3	0.46	0.341
population 3	100	500	400	1000	0.35	0.5	0.46	-0.099

- allele frequency
 - p(A) = (2*AA + Aa) / (2*N)
 - $p_1(A) = (2*125 + 250) / 1000 = 0.5$
 - q(a) = 1-p
- **H**_o observed heterozygosity
 - proportion of heterozygotes, i.e., $H_o = Aa / N$
 - H_{o1} = 250 / 500 = 0.5
- **H**_e *expected heterozygosity*
 - 2pq
 - $H_{e1} = 2*0.5*0.5 = 0.5$
- **F** inbreeding coefficient in population
 - $F = (H_e H_o) / H_e$

Example of F-statistics calculation II

	Genotype							
	AA	Aa	aa	N	р	Но	Не	F
population 1	125	250	125	500	0.5	0.5	0.5	0
population 2	50	30	20	100	0.65	0.3	0.46	0.341
population 3	100	500	400	1000	0.35	0.5	0.46	-0.099

•allele frequency across all populations

- $\overline{p} = (p_1^* N_1^* 2 + p_2^* N_2^* 2 + p_3^* N_3^* 2) / (N_1^* 2 + N_2^* 2 + N_3^* 2) = 0.4156$
- heterozygosity indices
 - H_I observed heterozygosities in populations
 - $H_1 = (H_{o1} * N_1 + H_{o2} * N_2 + H_{o3} * N_3) / N_{total} = 0.4875$
 - H_T expected heterozygosities in populations
 - $H_T = (H_{e1}^*N_1 + H_{e2}^*N_2 + H_{e3}^*N_3) / N_{total} = 0.4691$
 - $\bullet H_s expected heterozygosities across all populations$

• $H_s = 2^* \overline{p}^* \overline{q} = 0.4858$

Example of F-statistics calculation III

	Genotype							
	AA	Aa	aa	N	р	Но	Не	F
population 1	125	250	125	500	0.5	0.5	0.5	0
population 2	50	30	20	100	0.65	0.3	0.46	0.341
population 3	100	500	400	1000	0.35	0.5	0.46	-0.099

fixation indices level of

- $\mathbf{F}_{IS} = (H_S H_I) / H_S = -0.0393$
- $F_{sT} = (H_T H_S) / H_T = 0.0344$

subpenulation differentiation

inbreeding in populations

- **4** subpopulation differentiation
- $\mathbf{F}_{IT} = (\mathbf{H}_{T} \mathbf{H}_{I}) / \mathbf{H}_{T} = -0.0036$

total inbreeding

Software for isozyme analysis

FSTAT

http://www2.unil.ch/izea/softwares/fstat.html

- allele frequency, heterozygosity
- F-statistics (Nei, Weir & Cockerham)
- H-W equilibrium testing

Application of isozyme analysis

- clone identification
 - comparision of zymograme pattern
 - limited variation use variable DNA markers instead
- population level population genetics ...
- geographical variation
- hybrid identification, introgression
- phylogenetic relationships
 - at the level of closely related species
- evolutionary rate molecular clock

Clonal diversity

Brachypodium pinnatum, Schläpfer & Fischer 1998

Population size, H, fitness

Cochlearia bavarica, Paschke et al. 2002

Geographical variation

Hybridization

latifolia

glauca

angustifolia

Typha, Sharitz et al. 1980

Relationships within a species

Eriogonum ovalifolium, Archibald et al. 2001

Evolutionary rate – molecular clock

- constant mutation rate expected
 - 10⁻⁷ /locus*year
 - might be very variable
- relationship between genetic distance (D) and divergence time $(t) D=2\alpha t$
 - α substitution rate
 - $t = 5*10^6 D$
- rough estimate, closely related species only

Evolutionary rate – molecular clock

- constant mutation rate exp
 - 10⁻⁷ /locus*year
 - might be very variable
- relationship between gene and divergence time (t) – D
 - α substitution rate
 - $t = 5*10^6 D$
- rough estimate, closely relation

Species traits and allozyme diversity

		proportion of genetic variation			
		within populations		among populations	
characteristics		low	high	low	high
life form	prennials, trees		•	•	
	annuals	•			•
area	large		•	n.s.	
	endemit	•			
reproduction system	allogamy, anemogamy		•	•	
	autogamy	•			•
seed dispersal	zoochory, anemochory		•	•	
	explosive	•			•

(Hamrick & Godt 1989: review from 449 species and 165 genera)

Selective neutrality of isozymes

- selective neutrality
 - *neutral alleles* maintained by equilibrium between mutation (origin of new) and genetic drift (extinction)
 - i.e., isoenzymes are functionally equal no allele has a selective advantage
- true for broad spectrum of species
- BUT: some loci could be correlated with fitness
 - allele frequency changed along an ecological gradient, e.g., elevation

Selective neutrality of isozymes ?

Bromus hordeaceus, Lönn et al. 1998

Population study

Tomimatsu H. & Ohara M. (2003): Genetic diversity and local population structure of fragmented populations of *Trillium camschatcense* (Trilliaceae). *Biological Conservation* 109: 249–258.

Systematic study

Ritland K., Meagher L.D., Edwards D.G.W. & El-Kassaby Y.A. (2005): Isozyme variation and the conservation genetics of Garry oak. *Canadian Journal of Botany* 83: 1478-1487

Literature

Soltis & Soltis [eds.] (1989): *Isozymes in plant biology*.

Baker A.J. (2000): Molecular methods in ecology. pp. 65-88

Murphy R.W. et al. (1996): *Proteins: Isozyme electrophoresis*. In: Hillis D.M. et al. [eds.]: Molecular systematics.

Karp A. et al. (1998): *Molecular tools for screening biodiversity*. pp. 73-81

Avise J.C. (2004): Molecular markers, natural history and evolution. pp. 57-63.

Hamrick, Godt, Murawski & Loveless (1991): *Correlations between species traits and allozyme diversity: Implications for conservation biology*. pp. 75-86. In Falk & Holsinger [eds.] Genetics and Conservation of Rare Plants

Hartl & Clark (2007): *Principles of Population Genetics*. 4th edition.

Hamilton M.B. (2009): Population genetics.

Allendorf & Luikart (2006): Conservation and the genetics of populations. pp. 47-62.

Internet resources

enzyme database: http://www.brenda-enzymes.info/

methodology, gel evaluation:

http://www.plantbiology.siu.edu/PLB479/IsozymeTechniques/GelExercise.html