Molecular markers in plant systematics and population biology

3. Isoenzyme analysis

Tomáš Fér
tomas.fer@natur.cuni.cz
What are enzymes?

- proteins – more than 100 aminoacids connected with peptide bond
- function – catalysts of chemical processes (enable substrate transformation)
- more than 5,000 enzymes known
- isoenzymes (isozymes) – enzymes with the same metabolic function, catalyzing the same reaction, but with different (primary) structure
- allozymes – products coded by different alleles of the same gene (locus) – very similar to each other
Enzyme structure

- **aminoacids** – positive, negative or neutral charge (depends on pH)
- **primary structure** – sequence of aminoacids, determined genetically
- **secondary and tertiary structure** (molecule shape) – influenced by molecule size, charge and polarity (hydrophility) – stabilized by covalent disulfide bonds, non-covalent hydrogen bonds, ionic bonds and hydrophobic interactions
- **quarternary structure** – formation of functional enzyme from more subunits (monomeric, dimeric, tetrameric enzymes)
What we get with isoenzyme analysis?

- geneticaly based (inherited) differences
 - i.e., differences in the primary structure

- differences are reflected by
 - total charge of the molecule
 - shape and size of the molecule

- i.e., different mobility of particular isoenzymes in the electric field
How to study isoenzymes

1. extraction
 - from the fresh material
 - homogenization with extraction buffer
 - centrifugation
 - supernatant can be stored frozen at -70 °C

2. separation – electrophoresis

3. detection
Electrophoresis

• separation of molecules according to their mobility in the electric field

• majority of aminoacids – negative charge in alkalic pH

• molecules move to anode (positively charged electrode)

• mobility is influenced by
 • shape and size of the molecule
 • molecule charge

• sensitive method – separation of molecules differing by one charge unit
Electrophoresis – techniques

- vertical – polyacrylamide gels

- horizontal – starch gel
Protein detection on the gel

- nothing visible on the gel
- unspecific staining of all proteins (*Coomassie Brilliant Blue*)
- detection of enzymatic activity – specific staining – based on the reaction that is catalyzed by the particular enzyme
- different types of detection
 - *coloured product* – coloured band at the position of enzyme
 - *coloured substrate* – gel destained at the position of enzyme
 - *mixed reaction* – product not coloured but made visible with other reaction(s)
Examples of enzyme detection

LAP
leucin aminopeptidase

SOD
superoxid dismutase
Detection of enzymatic activity

alkoholdehydrogenase

CH$_3$-CH$_2$OH (ethanol) → CH$_3$-CH=O (acetaldehyde)

NAD+ → NADH/H+

PMS red. → PMS ox.

MTT soluble tetrazolium salt → formazan coloured precipitate

phenasine methosulfate

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
Enzyme classification

1. *oxidoreductases* – electron transfer (oxidase, dehydrogenase)
2. *transferases* – transfer of functional group (monosaccharide, phosphate, methyl, amine, acetyl...)
3. *hydrolases* – hydrolytic cleavage of C-O, C-N or C-C bond
4. *lyases* – cleavage of C-O, C-N or C-C bond
5. *isomerases* – change of geometric structure
6. *ligases* – linkage of two molecules
Enzyme example

• E.C. 1.1.1.1 : alcohol dehydrogenase

http://www.brenda-enzymes.info/
What we see on the gel

- **zymogram** – banding pattern
- **isozyme bands** – zones of enzymatic activity

assumptions for interpretation
- different mobility reflects difference in DNA (difference is inherited)
- homology of comigrating bands
- codominant expression
 - all alleles are exprimated
 - homozygotes and heterozygotes can be distinguished
- quarternary structure known
Isozyme data evaluation

simple comparison of banding pattern

- entire congruence – clone identification

- limited variation...
Allelic evaluation of isozymes

1. determination of number of loci
 • different loci – isozymes might originate from different compartments (e.g., cytosol, chloroplast etc.)

2. determination of number of alleles per locus
 • codominance
 • quarternary structure
 • ploidy level

Isozymes – catalyze the same reaction

Allozymes – products (alleles) of the same gene
Quarternary structure

number and arrangement of subunits into the functional enzyme

dimer
tetramer
Evaluation of heterozygotes at the locus

Leucine Aminopeptidase (LAP)
Phosphoglucomutase (PGM)
Shikimat Dehydrogenase (SKDH)

Amino Aspartate Transferase (AAT)
Alcohol Dehydrogenase (ADH)
Carboxylesterase (EST)
Glucose-6-Phosphate Isomerase (GPI)
Isocitrate Dehydrogenase (IDH)
Malate Dehydrogenase (MDH)
6-Phosphogluconate Dehydrogenase (6PGDH)
Superoxide Dismutase (SOD)

Glucose-6-Phosphate Dehydrogenase (G6PDH)
Malate Dehydrogenase NADP+ (ME)
Dimeric enzymes

homozygote

heterozygote

homozygote

1 : 2 : 1
LAP – monomeric enzyme

Sparganium erectum – diploid

1. locus

2. locus

3. locus

monomeric

5 alleles

GENOTYPES

aa be be cd ce ce cd ad bd
6-PGDH – dimeric enzyme

Arceuthobium (Viscaceae) – diploid

http://www.plant.siu.edu/PLB479/IsozymeTechniques/GelExercise.html
Tetraploid organisms

- autotetraploids
 - 2/2 heterozygotes – AAaa
 - 2 types of 3/1 heterozygotes – AAAa, Aaaa
 - *tetrasomic inheritance* – all combinations are equally possible

- allotetraploids
 - chromozomal and genetic differentiation of two parental genomes
 - *disomic inheritance* – fixed heterozygosity – AABB
Zymogram of tetraploid organisms

<table>
<thead>
<tr>
<th>allele A</th>
<th>allele B</th>
<th>allele C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABB</td>
<td>AAAB</td>
<td>ABBB</td>
</tr>
<tr>
<td>AACC</td>
<td>AAAC</td>
<td>ACCC</td>
</tr>
<tr>
<td>BBCC</td>
<td>BBBC</td>
<td>BCCC</td>
</tr>
<tr>
<td>AABC</td>
<td>ABBC</td>
<td>ABCC</td>
</tr>
</tbody>
</table>

Anemone nemorosa autotetraploid PGDH (dimer)

(Stehlik & Holderegger 2000)
Allopolyploids

Gel Photo

- **d**
- **e**
- **f**

Interpretation of Band Presence and Approximate Intensity

- **g**
- **h**
- **i**

Allelic Interpretation

<table>
<thead>
<tr>
<th></th>
<th>Diploid</th>
<th>Allohexaploid with Cryptic Disomy</th>
<th>Allohexaploid Showing Fixed Heterozygosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Glucose-6-phosphate Isomerase (PGI, EC 5.3.1.9)

Problems

- **Allelic Dosage**
 - ifmmmm or fmffmm?

- **Isoloci Assignment (due to disomic pattern)**
 - genotype ff, mm, mm, or fm, fm, mm?

Isoenzyme analysis

pros
- fast method – possible to analyse many individuals simultaneously
- cheap technique (in comparison with DNA techniques) - ?
- data comparable among different studies
- codominant marker
- estimate allelic dosage in polyploids
- slow mutation rate (advantage against microsatellites)
 - \(10^{-7} / \text{locus*year}\)

cons
- living material needed
- limited variability – low number of alleles per locus – often 2-4 only
- variability in coding part of the genome only
- detected variability
 - 10% of variability of DNA (Nei 1987)
 - only 1/3 of nucleotide substitutions is reflected by aminoacid changes
 - and only ca. 25% is detectable with electrophoresis
Evaluation of codominant data

- number of alleles per locus – A
- **allelic richness**
 - expected number of different allele
 - standardized for number of samples
- percentage of polymorphic loci – P
- heterozygosity
 - observed – H_0 (proportion of heterozygotes)
 - expected – H_e
 - if Hardy-Weinberg equilibrium expected
 - = gene diversity – D

\[
D = 1 - \frac{1}{m} \sum_{i=1}^{m} \sum_{i=1}^{k} p_i^2
\]

- m – number of loci
- k – number of alleles per locus
- p_i – frequency of i-th allele from k

- probability that particular individual is heterozygote
Interpopulation variation

- coefficient of *genetic distance* or *genetic identity*
 - Nei’s coefficient

\[
I = \frac{\sum x_i y_i}{\sqrt{\sum x_i^2 \sum y_i^2}}
\]

- Rogers’ *genetic distance* – \(D_R\) – typical for isozymes

- dendrogram – based on the pairwise similarity matrix

<table>
<thead>
<tr>
<th></th>
<th>S001</th>
<th>S006</th>
<th>S012</th>
<th>S008</th>
</tr>
</thead>
<tbody>
<tr>
<td>S001</td>
<td>1.000</td>
<td>0.811</td>
<td>0.811</td>
<td>0.778</td>
</tr>
<tr>
<td>S006</td>
<td>0.811</td>
<td>1.000</td>
<td>0.977</td>
<td>0.876</td>
</tr>
<tr>
<td>S012</td>
<td>0.811</td>
<td>0.977</td>
<td>1.000</td>
<td>0.898</td>
</tr>
<tr>
<td>S008</td>
<td>0.778</td>
<td>0.876</td>
<td>0.898</td>
<td>1.000</td>
</tr>
</tbody>
</table>

- UPGMA
- *neighbour-joining* (NJ) – minimalizes tree length
F-statistics (Wright 1951)

- partitioning of genetic variation
 - I-individual, S-subpopulation, T-total

- F_{IS} – level of inbreeding (*inbreeding coefficient*)
- F_{ST} – subpopulation differentiation
- F_{IT} – global H-W disequilibrium (deviation from random mating)
- $1 - F_{IT} = (1 - F_{IS})(1 - F_{ST})$
- parameters estimation (Weir & Cockerham 1984)
 - correction for number of individual and populations
 - $F \sim F_{IT}$, $\theta \sim F_{ST}$, $f \sim F_{IS}$
F_{IS} – level of inbreeding (inbreeding coefficient)

- **-1** – completely outbred population, i.e., no homozygotes
- **0** – no inbreeding
- **+1** – completely inbred population, i.e. no heterozygotes
F_{ST} — subpopulation differentiation

- **0** – no genetic population structure
 (same allele frequencies in all populations)

- **1** – maximum genetic population structure
 (each population fixed for different allele)
F_{ST} – subpopulation differentiation

- **0** – no genetic population structure (same allele frequencies in all populations)
- **1** – maximum genetic population structure (each population fixed for different allele)

<table>
<thead>
<tr>
<th>F_{ST} value</th>
<th>differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 0.05</td>
<td>low</td>
</tr>
<tr>
<td>0.05 – 0.15</td>
<td>middle</td>
</tr>
<tr>
<td>0.15 – 0.25</td>
<td>high</td>
</tr>
<tr>
<td>> 0.25</td>
<td>very high</td>
</tr>
</tbody>
</table>
Example of F-statistics calculation

<table>
<thead>
<tr>
<th>Genotype</th>
<th>AA</th>
<th>Aa</th>
<th>aa</th>
<th>N</th>
<th>p</th>
<th>Ho</th>
<th>He</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>population 1</td>
<td>125</td>
<td>250</td>
<td>125</td>
<td>500</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>population 2</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>100</td>
<td>0.65</td>
<td>0.3</td>
<td>0.46</td>
<td>0.341</td>
</tr>
<tr>
<td>population 3</td>
<td>100</td>
<td>500</td>
<td>400</td>
<td>1000</td>
<td>0.35</td>
<td>0.5</td>
<td>0.46</td>
<td>-0.099</td>
</tr>
</tbody>
</table>

- allele frequency
 - \(p(A) = \frac{(2*AA + Aa)}{(2*N)} \)
 - \(p_1(A) = \frac{(2*125 + 250)}{1000} = 0.5 \)
 - \(q(a) = 1-p \)

- \(H_o \) – *observed heterozygosity*
 - proportion of heterozygotes, i.e., \(H_o = Aa / N \)
 - \(H_{o1} = 250 / 500 = 0.5 \)

- \(H_e \) – *expected heterozygosity*
 - \(2pq \)
 - \(H_{e1} = 2*0.5*0.5 = 0.5 \)

- **F** – inbreeding coefficient in population
 - \(F = (H_e - H_o) / H_e \)
Example of F-statistics calculation II

<table>
<thead>
<tr>
<th>Genotype</th>
<th>AA</th>
<th>Aa</th>
<th>aa</th>
<th>N</th>
<th>p</th>
<th>Ho</th>
<th>He</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>population 1</td>
<td>125</td>
<td>250</td>
<td>125</td>
<td>500</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>population 2</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>100</td>
<td>0.65</td>
<td>0.3</td>
<td>0.46</td>
<td>0.341</td>
</tr>
<tr>
<td>population 3</td>
<td>100</td>
<td>500</td>
<td>400</td>
<td>1000</td>
<td>0.35</td>
<td>0.5</td>
<td>0.46</td>
<td>-0.099</td>
</tr>
</tbody>
</table>

• allele frequency across all populations
 \[\bar{p} = (p_1 * N_1 * 2 + p_2 * N_2 * 2 + p_3 * N_3 * 2) / (N_1 * 2 + N_2 * 2 + N_3 * 2) = 0.4156 \]

• heterozygosity indices
 • \(H_I \) – observed heterozygosities in populations
 \[H_I = (H_{o1} * N_1 + H_{o2} * N_2 + H_{o3} * N_3) / N_{total} = 0.4875 \]
 • \(H_T \) – expected heterozygosities in populations
 \[H_T = (H_{e1} * N_1 + H_{e2} * N_2 + H_{e3} * N_3) / N_{total} = 0.4691 \]
 • \(H_S \) – expected heterozygosities across all populations
 \[H_S = 2 * \bar{p} * \bar{q} = 0.4858 \]
Example of F-statistics calculation III

<table>
<thead>
<tr>
<th>Genotype</th>
<th>AA</th>
<th>Aa</th>
<th>aa</th>
<th>N</th>
<th>p</th>
<th>Ho</th>
<th>He</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>population 1</td>
<td>125</td>
<td>250</td>
<td>125</td>
<td>500</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>population 2</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>100</td>
<td>0.65</td>
<td>0.3</td>
<td>0.46</td>
<td>0.341</td>
</tr>
<tr>
<td>population 3</td>
<td>100</td>
<td>500</td>
<td>400</td>
<td>1000</td>
<td>0.35</td>
<td>0.5</td>
<td>0.46</td>
<td>-0.099</td>
</tr>
</tbody>
</table>

fixation indices

- \(F_{IS} = \frac{H_S - H_I}{H_S} = -0.0393 \)
- \(F_{ST} = \frac{H_T - H_S}{H_T} = 0.0344 \)
- \(F_{IT} = \frac{H_T - H_I}{H_T} = -0.0036 \)

level of inbreeding in populations

subpopulation differentiation

total inbreeding
Software for isozyme analysis

FSTAT

http://www2.unil.ch/izea/softwares/fstat.html

- allele frequency, heterozygosity
- F-statistics (Nei, Weir & Cockerham)
- H-W equilibrium testing
Application of isozyme analysis

- clone identification
 - comparision of zymogram pattern
 - limited variation – use variable DNA markers instead
- population level – population genetics ...
- geographical variation
- hybrid identification, introgression
- phylogenetic relationships
 - at the level of closely related species
- evolutionary rate – molecular clock
Clonal diversity

Brachypodium pinnatum, Schläpfer & Fischer 1998
Population size, H, fitness

Cochlearia bavarica, Paschke et al. 2002
Geographical variation

Melica ciliata, Tyler 2004
Hybridization

Typha, Sharitz et al. 1980
Relationships within a species

Eriogonum ovalifolium, Archibald et al. 2001
Evolutionary rate – molecular clock

• constant mutation rate expected
 • 10^{-7}/locus*year
 • might be very variable

• relationship between genetic distance (D) and divergence time (t) – $D=2\alpha t$
 • α – substitution rate
 • $t = 5 \times 10^6 \ D$

• rough estimate, closely related species only
Evolutionary rate – molecular clock

- Constant mutation rate expected
 - 10^{-7}/locus*year
 - Might be very variable
- Relationship between genetic distance (D) and divergence time (t) – $D = \frac{2}{\alpha} \cdot t$
 - α - substitution rate
 - $t = 5 \times 10^6 D$
- Rough estimate, closely related species only
Species traits and allozyme diversity

<table>
<thead>
<tr>
<th>characteristics</th>
<th>proportion of genetic variation</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>within populations</td>
<td>among populations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>life form</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prennials, trees</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>annuals</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>large</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>endemit</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reproduction system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>allogamy, anemogamy</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>autogamy</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>seed dispersal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zoochory, anemochory</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>explosive</td>
<td>●</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Hamrick & Godt 1989: review from 449 species and 165 genera)
Selective neutrality of isozymes

- selective neutrality
 - *neutral alleles* – maintained by equilibrium between mutation (origin of new) and genetic drift (extinction)
 - i.e., isoenzymes are functionally equal – no allele has a selective advantage
- true for broad spectrum of species
- BUT: some loci could be correlated with fitness
 - allele frequency changed along an ecological gradient, e.g., elevation
Selective neutrality of isozymes?

![Graph showing mean seed weight on first spikelet (g) for different treatments of Bromus hordeaceus with varying flooding conditions. The graph illustrates the effect of different genotypes (Pgi-1b-1f1f, Pgi-1b-22, Pgi-1b-11, Pgi-1b-33) across dry, normal, flooded 1-2 weeks, and flooded 4-5 weeks conditions. The error bars represent the standard error (SE).]

Bromus hordeaceus, Lönn et al. 1998
Population study

Systematic study

Literature

Karp A. et al. (1998): *Molecular tools for screening biodiversity.* pp. 73-81
Hamrick, Godt, Murawski & Loveless (1991): *Correlations between species traits and allozyme diversity: Implications for conservation biology.* pp. 75-86. In Falk & Holsinger [eds.] Genetics and Conservation of Rare Plants

Internet resources

enzyme database: http://www.brenda-enzymes.info/
methodology, gel evaluation:
http://www.plantbiology.siu.edu/PLB479/IsozymeTechniques/GelExercise.html