Molecular markers in plant systematics and population biology

5. RFLP, PCR-RFLP, cpDNA, mtDNA

Tomáš Fér
tomas.fer@natur.cuni.cz
Restriction Fragment Length Polymorphism

- polymorphism in length of the fragments produced by restriction of DNA

- basic principle of the method
 - cleavage of total DNA to fragments with the use of restriction endonucleases
 - electrophoretic separation of fragments according to their length
 - transfer of fragments to the membrane
 - hybridization with labelled probe
Restriction endonucleases

- enzymes isolated from bacteria
 - EcoRI – *Escherichia coli*, AluI - *Arthrobacter luteus* ...
- specific cleavage of dsDNA (*double stranded*)
- recognise particular sequence
 - palindrom – symmetry along the central point
 - mostly 4 bp or 6 bp
 - asymmetric cleavage (*sticky ends*) – e.g., EcoRI

- symmetric cleavage (*blunt ends*) – e.g., AluI
Classical RFLP

1. Total DNA
2. Endonuclease
3. Restriction fragments
4. Southern blotting
5. Transfer to the membrane
6. Hybridization
7. Probe
8. Restriction profile
Probe preparation

- bacterial cloning of particular part of DNA (gene, operon)
- (non)radioactive product labelling – 32P, 35S, fluorescence etc.
- using probe from the studied (or similar) taxa
- i.e., rDNA probe – visualization of DNA fragments originating from this region
- frequent use of cpDNA probes
Polymorphism

- *mutation* in the restriction site
 - loss (B) is more probable than gain of the new site (one change on whichever position is sufficient)
- new site (C) – specific change
- *insertion* (E) or *deletion* (D) between two restriction sites
<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
</table>
| - highly reproducible pattern
- variability in particular part of DNA (e.g., cpDNA, rDNA ...) | - large amount of DNA necessary
- need for an amount of labelled probe
- expensive and complicated
 - blotting equipment
 - work with labelled materials (detection etc.) |
RFLP gels examples

http://www.ufpe.br/biolmol/Tec-mol-biol/RFLP-real.JPG
PCR-RFLP

• or – CAPS (Cleaved Amplified Polymorphic Sequence)

• principle of the method
 • amplification of target DNA using a pair of primers
 • restriction of PCR product with endonuclease
 • electrophoresis
 • fragment visualization using, e.g., ethidium bromide
PCR-RFLP

- advantages
 - minimum amount of DNA necessary
 - no need for blotting and for radioactivity-labelled material – simple method

- common use – cpDNA and rDNA (i.e., ITS)
 - PCR amplification of non-coding regions
 - use of universal primers
PCR-RFLP cpDNA

1. PCR

2. Restriction

Endonuclease

Electrophoresis

Lye et al., 2021
dCAPS — derived Cleaved Amplified Polymorphic Sequence

- when the SNP of interest does not alter the restriction site of an available RE
- mismatches in the dCAPS primer create a restriction site
- dCAPS Finder 2.0 – http://helix.wustl.edu/dcaps/

<table>
<thead>
<tr>
<th>type1</th>
<th>GTGGAAGAAGCTCGATGAGGCTTTTGGGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>type2</td>
<td>GTGGAAGAAGCTCGATGAGGCTTTTGAAG</td>
</tr>
<tr>
<td>BslI</td>
<td>CCNNNNNNNNGG</td>
</tr>
<tr>
<td>dCAP primer</td>
<td>GTGGAAGAAGCTCGACCCAGGCTTTTG</td>
</tr>
<tr>
<td>BslI digestion</td>
<td></td>
</tr>
<tr>
<td>type1</td>
<td>GTGGAAGAAGCTCGACCCAGGCT / TTGGGG</td>
</tr>
<tr>
<td>type2</td>
<td>GTGGAAGAAGCTCGACCCAGGCTTTTGAGG</td>
</tr>
</tbody>
</table>
dCAPS gel example

Kushanov et al., 2016
Chloroplast genome (cpDNA)

- circular molecule
- 45-220 kb
- 30-100 in plastide
- homoplasmy
- 2 subunits – LSC, SSC
- IR – inverted repeats (10-30 kb)
- genes for
 - proteins (70-88)
 - photosystem – \(ps \)
 - ribosomal protein – \(rp \)
 - RUBISCO – \(rbc \)
 - tRNA – \(trn \) (30-35)
 - rRNA (2×4)
 - ...

\[\text{Lolium perenne L.} \]
\[135 \text{ 282 bp} \]
Specificity of cpDNA

- relatively conserved – low mutation rate
 - extraordinary degree of functional and structural conservation
 - constantly high selective pressure on genes for the photometabolic pathways
 - genes in IR evolve about three times more slowly than those in the SC regions

- but – existence of intraspecific variation

- mutation types
 - point
 - insertions/deletions – frequent in non-coding regions

- non-recombinant unit

- haploid – haplotypes

- uniparental inheritance
 - maternal tranfer in angiosperms – via seeds
 - paternal transfer in gymnosperms – via pollen
Plastome structure

- conservative among land plants
- reconfigured in non-photosynthetic heterotrophic plants
 - loss of many genes
 - structural reconfigurations (inversions, IR reduction or loss)
 - overall relaxed selection on plastome architecture

Wicke & Schneeweiss 2014
Plastome structure

- gene gain is extremely rare
 - three gained before the transition to land (*matK, ycf1, ycf2*)
 - more than a dozen were lost/transferred to the nuclear genome

- inserts to nuclear DNA
 - NUPTs – nuclear plastid DNAs
 - NUMTs – nuclear mitochondrial DNA

- inserts to mitochondrial genome
 - MIPTs – mitochondrial inserts of plastid DNAs

- NUPTs, NUMTs and MIPTs are paralogs of the genuine organelle DNA copies (promiscuous DNA)
 - large inserts in pericentromeric regions
 - later fragmented by TE insertions and reshuffled away from centromere
 - distribution is species-specific
Chloroplast size, nr. of genes

- cca 1,700 sequenced plastomes (land plants)
- size 150 kbp (19 – 243)
- 131 (26 – 315) genes: 84 proteins, 8 rRNA, 37 tRNA

Mitochondrial DNA – chondrome

- often inflated in size
- less than 20% coding regions (19-64 genes), max. 40 kb (excl. introns)
 - respiratory chain complexes (nad, sdh, cob, cox, atp)
 - cytochrome c maturation (ccm)
 - ribosomal proteins for the small and large subunit (rpl, rps)
 - translocase (mttB/tatC) ...
 - 4 ribosomal genes
- substitution rate is low
- foreign DNA (other cellular genomes or other organisms)
- often inflated in size
 - from 101 kb (non-vascular plants)
 - to 11.3 Mbp in *Silene conica*

- rarely used for phylogenetic and phylogenomic purposes
- lower resolution, lower support and/or incongruent with plastome-derived phylogenies
Mitochondrial DNA – complicated structure

- several segments (loops)
- hard to assemble

Picea sitchensis
5.52 Mbp, 13 segments
Jackman et al. 2019
Mitochondrial DNA – phylogeny

3 mtDNA genes
- atp1
- coxl
- matR

- angiosperms
- 11 independent origins of parasitism

Barkman et al. 2007
Applications

- phylogeography
 - geography of gene lineages (haplotypes)
 - reconstruction of postglacial recolonization
- study of gene flow by seeds
 - what is the influence of cpDNA to the total genetic differentiation of populations
- systematics
 - phylogeny reconstruction
- study of hybridization
 - identification of maternal taxon (individual)
Phylogeography

influence of historical factors (typically glaciation) to the geographical distribution of gene lineages

- maximum glaciation – 20,000-18,000 BP
- maximum (concentrated) variability in the Mediterranean
- 3 major refugia – Iberian Peninsula, the Appeninnes, the Balkans
- only small part of the variability migrated back to the Central and Northern Europe
- recolonization started circa 13,000 BP
- we can trace individual lineages (*cpDNA haplotypes*) and correlate them with their geographical distribution

maximum extent of glaciation during last ice age
permafrost
R1, R2, R3 – major refugia
cpDNA haplotypes at the population level

- geographical distribution of alleles
- new alleles originate due to mutations
- all existing alleles are derived from a single ancestor allele → existed sometime in the past

- problems with polarity – use of *minimum spanning tree*
 - minimalizes number of mutations
Postglacial recolonisation of Europe

Quercus sp.

http://www.pierroton.inra.fr/Fairoak
Fraxinus excelsior
Heuertz et al. 2006
Carpinus betulus
Grivet & Petit 2003
Reconstruction of beech migration using cpDNA microsatellites and PCR-RFLP cpDNA techniques. Magri et al. 2006.
Reconstruction of beech migration

MAGRI ET AL. 2006
Fagus sylvatica – isozyme analysis

Magri et al. 2006
Phylogeography of alpine plants in Japan

Potentilla matsumurae, Ikeda et al. 2006
Phylogeography based on mtDNA
Gymnosperms

Pinus sylvestris – intron 1 of *nad7*, 4 haplotypes
Naydenov et al. 2007
Phylogeography based on mtDNA

Larix decidua

2 regions (UBC460 and *atpA*) – 2 haplotype groups

Wagner et al. 2005
Analysis of phylogeographical data – statistical parsimony network of haplotypes

- **software – TCS 1.21**

Analysis of phylogeographical data – \textit{nested clade analysis}

- software – GeoDis

Analysis of phylogeographical data – *comparison of F_{ST} and N_{ST} – unordered vs. ordered alleles*

- genetic distances among alleles (haplotypes)
 - without phylogeny (F_{ST} – *unordered alleles* – frequencies)
 - with phylogeny (N_{ST} – *ordered alleles* – distances among haplotypes are taken into account)

- testing – F_{ST} vs. N_{ST} vs. 0
- software – *PERMUT, SPAGeDi*

Analysis of phylogeographical data – *comparison of* F_{ST} and N_{ST} – unordered vs. ordered alleles

phylogeographical pattern

$N_{ST} > F_{ST} > 0$

genetic structure without phylogeographical pattern

$N_{ST} = F_{ST} > 0$

no genetic structure

$N_{ST} = F_{ST} = 0$

phylogeographical pattern – if mutation rate > migrate
Analysis of phylogeographical data – *identification of sharp changes in genetic similarity*

- software – *Barrier*
- *Mani et al. 2004*
- *Mani & Guérard 2004*
Proportion of pollen and seed transfer to the gene flow

- pollen - haploid nuclear DNA
- seeds - diploid nuclear DNA
 - cpDNA

\[
\text{pollen migration} \approx \frac{1}{F_{STb}} \left(\frac{1}{F_{STm}} - 1 \right) - 2 \left(\frac{1}{F_{STm}} - 1 \right)
\]

\[
\text{seed migration} \approx \frac{1}{F_{STm}} - 1
\]
Proportion of pollen and seed transfer to the gene flow

- **pollen** - haploid nuclear DNA

- **seeds** - diploid nuclear DNA
 - cpDNA

\[
\frac{\text{pollen migration}}{\text{seed migration}} \approx \frac{1}{F_{STb}} \left(1 - 1 \right) - 2 \frac{1}{F_{STM}} \left(1 - 1 \right)
\]

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Pollen dispersal</th>
<th>Seed dispersal</th>
<th>Pollen/seed migration rate</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercus sp.</td>
<td>Wind</td>
<td>Bird</td>
<td>196</td>
<td>Kremer et al. (1991)</td>
</tr>
<tr>
<td>Pinus contorta</td>
<td>Wind</td>
<td>Wind</td>
<td>28</td>
<td>Dong and Wagner (1993)</td>
</tr>
<tr>
<td>Argania spinosa</td>
<td>Insect</td>
<td>Ruminant</td>
<td>2.5</td>
<td>El Mousadik and Petit (1996)</td>
</tr>
<tr>
<td>Pinus sylvestris (Scotland)</td>
<td>Wind</td>
<td>Wind</td>
<td>18</td>
<td>Sinclair et al. (1998)</td>
</tr>
<tr>
<td>Pinus sylvestris (Spain)</td>
<td>Wind</td>
<td>Wind</td>
<td>105</td>
<td>Sinclair et al. (1999)</td>
</tr>
</tbody>
</table>

Silene alba (McCauley 1994)

\[
F_{st} = 0.67
\]

cpDNA
RFLP in systematics

- RFLP + hybridization
- PCR-RFLP
- cpDNA
- rDNA

- interspecific and intergeneric relationships
- hybridization – possibility to detect more ITS copies without cloning
Interspecific relationships

Citrus, Jena et al. 2009
Hybridization – restriction of ITS region (PCR-RFLP)

Curcuma, unpubl.

C. enneaphylos

C. glanduligera

Cardamine, Lihová et al. 2007
Population study

Tarayre M. (1997): The spatial genetic structure of cytoplasmic (cpDNA) and nuclear (allozyme) markers within and among populations of the gynodioecious *Thymus vulgaris* (Labiatae) in southern France. *American Journal of Botany* 84(12): 1675-1684
Systematic study

Literature

