Molecular markers in plant systematics and population biology

5. Microsatellites

Tomáš Fér
tomas.fer@natur.cuni.cz
What are microsatellites?

- *simple sequence repeats (SSRs)*
- *short tandem repeats (STRs)*
- tandem repetition, shorter than 6 bp, usually 2, 3 or 4 bp

...GTTCTGTCATATATATATATATATATATATATAT----CGTACTT...

...GTTCTGTCAT---CGTACTT...

- alleles are defined by different number of repetitions
- PCR – length polymorphism
Types of microsatellites

• simple
 ...CACACACACACACACACACACACACACACAC...

• compound
 ...CACACACACA\textcolor{green}{TGTGTGTGTGTG}...

• interrupted
 ...CACACA\textcolor{red}{TTCACACACATTTCACA}...
Repetitive sequences

• dinucleotides
 • AT repeat most common in plants
 • every 30-50 kb
 • number of repeats up to 30

• trinucleotides
 • occurs also in exons (do not break the reading frame) – especially GC-rich repeats
 • AT-rich trinucleotides distributed roughly evenly
 • GTG – subtelomeric localization on chromosome

• tetranucleotides
 • GATA/GACA only
 • localization near centromeres, highest occurrence in UTRs
 • often compound or interrupted
Characteristics of microsatellites

- *single locus* – highly specific
- common occurrence in the genome
- distributed throughout the whole genome
- highly polymorphic – many alleles
- codominant inheritance

- BUT – primers must be known (i.e., sequences of *flanking regions*)

...GTTCTGTCATATATATATATATATATATATATATATGCATCTTA...
Distribution in the genome

- distributed throughout the whole genome (BUT – reflects variability of the studied loci, i.e., restricted number of loci)
- rather in non-coding regions, tri- and hexanucleotide repeats also in exons
- high frequency in UTRs (variations in 5'-UTRs could regulate gene expression)

- nuclear microsatellites
 - species specific
- chloroplast microsatellites
 - repeats of one base – i.e., \((T)_{12}\)
 - *flanking regions* – less variable – possible to design consensual primers
Polymorphism detection

...GTTCTGTCATATATATATATATATCGTACTT...

total DNA

PCR – pair of specific primers
Microsatellite primers

- locus specific – only ones in the genome
- species specific

- do exists for the target species (published)
 - (i.e., in *Molecular Ecology Resources*, formerly *ME Notes*)
 (see also database at http://tomato.bio.trinity.edu)
 - summary – http://botany.natur.cuni.cz/dna (Primery/Mikrosatelitové primery)
 - mined from onekp.com project (Matasci et al. 2014, Hodel et al. 2016)

- search the GeneBank – SRA (target enrichment, genome skimming, transcriptomes...)

- test of primers from related species (same genus) – *cross-amplification* – does not work in most cases or problem with null alleles

- necessary to design
 - classical cloning
 - NGS – search for *reads* with microsatellites
Primer development

1. **Total DNA**
2. **Restriction**
 - Fragments 300-700 bp
3. **Insertion to Plasmid**
4. **Transformation**
5. **Library Enrichment**
6. **Primer Design**
 - F: CTGT
 - R: CGCTT
 - F: GCCTGC
 - R: GCTATTTG
 - F: GCTTAC
 - R: GTACTTG
7. **Sequencing of Positive Clones**
8. **Detection of Positive Clones**
9. **Functionality and Polymorphism Tests**
Primer development – NGS

Software for primer development

- identification of potential loci
 - minimum number of repeat unit
 - minimum length of flanking regions
 - (primer design)

- Geneious (+ Phobos, Primer3, MISA plugins)
- GMATo (Wang et al. 2013)
- HighSSR (Churbanov et al. 2012)
- MISA (Thel et al. 2003)
- MSATCMMANDER (Faircloth 2008)
- PAL_FINDER (Castoe et al. 2012)
- QDD3 (Meglécz et al. 2014)
- SSR_pipeline (Miller et al. 2013)
Gel interpretation

- "stutter bands" – additional bands around the band with the right length (most intense) – in vitro DNA slippage
- "terminal transferase activity" – tendency of Taq polymerase to add A at 3′-terminus
Gel interpretation II.

stutter bands
- products by 2, 4, 6 etc. bp shorter
- highest *peak* the longest – the right allele

stutter bands and -A products
- *stutter bands* by 2, 4, 6 etc. bp shorter
- -A product to each band as well

☑ correct allele
Automatic analysis (GeneMarker)
How to assess tetraploid data

- as dominant data – presence/absence of alleles
- codominantly (we see alleles, but what is the genotype?)
 - three alleles – one is twice but which one? (i.e., treated as 3 alleles + missing)
 - two alleles – each twice or one of them thrice? (i.e., treated as 2 alleles + 2 missing)
- problem – large amount of missing data
- alternative – number of alleles determined from the peak area
- autopolyploids/allopolyploids?
- software for different ploidy level data analysis – POLYSAT, SPAGeDi, TETRASAT, BAPS, STRUCTURE...
Tetraploid data (Betula)
Polymorphism origin

• DNA „slippage“
 • DNA polymerase „slips“ during replication
 • extension or reduction the length by one repeat
• „unequal crossing over“
 • more extensive changes

• high mutation rate – $10^{-3} - 10^{-5}$
Mutation of microsatellites

- mutation rate is estimated to be $10^{-3} – 10^{-5}$
 - differs in 2, 3 and 4 bp repeats
 - according to microsatellite type
 - different in different species ...
- mutation rate – balance between mutation and their reparation
- mostly – loss or gain of one repeat
- loci with more repeat units and with purer repeats – higher mutation rate
Allele homology

6 ATATATATATAT

5 ATATATATATAT

5 ATATATATATAT.. 5 ATATATATATAT.. ATATATATATAT.. 5

ATATATATATAT.. ATATATATATAT.. ATATATATATATAT.. 5

ATATATATATATATAT

identical by descent (IBD)

identical in state (IIS)
Mutation models

- **infinite alleles model (IAM) – Kimura & Crow 1964**
 - new allele with mutation rate u
 - homoplasy not allowed
 - identical alleles are IBD

- **stepwise mutation model (SMM) – Kimura & Ohta 1978**
 - new allele as an addition or loss of just one repeat
 - same probability of gain and loss ($u/2$)
 - generates homoplasy (alleles are not IBD, only IIS)
 - alleles of similar lengths are more related

- **two-phase model (TPM) – DiRienzo et al. 1994**
 - modification of one repeat with probability p
 - modification of more than one repeat with probability $1-p$
Null alleles

- loss of PCR product due to mutation in *priming site*
- i.e., heterozygosity underestimation – some heterozygotes scored as homozygotes
- identification using a pedigree study – allele not inherited
- frequency is higher when heterologous primers are used (cross-amplification from related species)
- frequency could be estimated based on H-W disequilibrium (i.e., software Cervus)
SSRs and SNPs comparison

SSRs
- every 2-30 kbp
- mutation rate 10^{-3} to 10^{-4}
- high allelic richness
- more private alleles
- higher degree of homoplasy
- limited number of loci

SNPs
- more numerous in the genome (every 100-300 bp)
- mutation rate 10^{-9}
- mainly bi-allelic
- fewer private alleles
- less prone to homoplasy
- many more loci

Advantages of SSRs over SNPs
- little ascertainment bias
- higher success rate of cross-amplification
- accuracy is easy to assess in pedigree analyses (due to many alleles per locus)

Drawbacks of SSRs over SNPs
- large sample sizes needed for accurate estimation of allelic frequencies
- rapid mutation could complicate parentage reconstruction
- poor indicators of long-term population history due to backward mutations
- might not accurately reflect the underlying genomic diversity
- complicated screening (capillary gel electrophoresis)
- need to include common controls among studies

Data evaluation

• codominant marker – allelic evaluation (similar to allozymes)
 • heterozygosity (observed, expected)
 • F-statistics (F_{IS})...
 • distances (among populations, individuals)
 • proportion of shared alleles (D_{ps})
 • Nei’s chord distance (D_a)
 • Nei’s standard distance (D)

• specific coefficients for microsatellites
 • R_{ST} – analogue of F_{ST} (Slatkin 1995)
 • SMM included (stepwise mutation model – based on variance in allele lengths)
 • estimates – ρ_{ST} (Rousset 1996)
 • distances
 • delta mu – $(dm)^2$, D_{dm} (Goldstein et al. 1995)
 • D_{sw} – stepwise weighted genetic distance
 • ...

• software
 • MICROSAT (Minch 1996)
 • MSA – Microsatellite Analyser (Dieringer & Schlötterer 2003)
 • RSTcalc (Goodman 1997)
Application of microsatellites

- parentage analysis
 - parent identification of seeds (seedlings) in populations
 - outcrossing rate
- clone identification
- population-genetic studies
 - inbreeding, H-W equilibrium testing
 - gene flow, migration
 - population history, effective population size changes...
- phylogeography
- systematics
 - problematical application – allele homology?
 - only at the level of closely related species
 - necessary to use many loci (to cover the „whole genome“ variation)
 - cpDNA SSRs
- hybridization
 - possible to distinguish F1 and advanced (F2, B1) hybrids
Parentage analysis

- direct estimate of distance and frequency of dispersal
 - seeds – distances between seeds and their parents
 - pollen – distances between parent pairs
- fitness of particular genotypes in population
 - participation of „individuals-fathers“ at pollination and fertilization
- outcrossing rate
 - % of seeds originated by allogamy
- assumptions
 - genotypes of all potential parents available (relatively low amount of individuals)
 - variable marker – microsatellites, AFLP
Methods of *parentage analysis*

- **exclusion analysis**
 - incompatibility between parental and progeny genotypes \rightarrow rejection of hypothesis
 - i.e., rejection of all parents but one or two
 - problems – scoring errors, null alleles, mutations

- **categorical allocation**
 - calculation of LOD score (*logarithm of the likelihood ratio*)
 - parents have the highest LOD score
 - advantage – less sensitive to errors and mutations

- software – i.e., CERVUS (Marshall et al. 1998)
Clone identification

- clone = the same multilocus genotype (i.e., same alleles at all loci)

Phragmites australis in the river Labe (Fér & Hroudová 2009)
Clone identification

• take care of discrimination possibility of markers

• *marker power*

MLG (*multilocus genotype*)

• if found more than ones – P_{sex} calculation, i.e., probability that this MLG could originate just by chance during different generative event – software GenClone, MLGSIM

Gene flow – indirect estimation

Cynara cardunculus – 5 loci

SSRs

(A)

AFLP

(B)

Portis et al. 2005

<table>
<thead>
<tr>
<th>Locus</th>
<th>F_{IS}</th>
<th>F_{TR}</th>
<th>F_{ST}</th>
<th>R_{ST}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDAT-01</td>
<td>-0.119</td>
<td>-0.016</td>
<td>0.093</td>
<td>0.078</td>
</tr>
<tr>
<td>CLIB-02</td>
<td>-0.089</td>
<td>0.139</td>
<td>0.201</td>
<td>0.178</td>
</tr>
<tr>
<td>CMAL-06</td>
<td>-0.076</td>
<td>0.068</td>
<td>0.133</td>
<td>0.182</td>
</tr>
<tr>
<td>CMAL-24</td>
<td>-0.036</td>
<td>0.136</td>
<td>0.166</td>
<td>0.210</td>
</tr>
<tr>
<td>CMAL-108</td>
<td>-0.014</td>
<td>0.071</td>
<td>0.083</td>
<td>0.185</td>
</tr>
<tr>
<td>Overall loci</td>
<td>-0.064</td>
<td>0.086*</td>
<td>0.141*</td>
<td>0.168*</td>
</tr>
</tbody>
</table>

* $P < 0.0001.$
Phylogeography

testing alternative migration hypotheses

- ABC – approximate Bayesian computation

Alnus glutinosa (Mandák et al. 2015)
Phylogeny inference

Self-(in)compatibility

- % of seeds originated by allogamy, i.e. in parentage analysis is first and second parent the same
- outcrossing rate

Hybridization

<table>
<thead>
<tr>
<th>Species</th>
<th>176</th>
<th>176</th>
<th>278</th>
<th>278</th>
<th>176</th>
<th>190</th>
<th>269</th>
<th>269</th>
<th>179</th>
<th>179</th>
<th>93</th>
<th>93</th>
<th>278</th>
<th>278</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. latifolia</td>
<td></td>
</tr>
<tr>
<td>T. angustifolia</td>
<td>210</td>
<td>210</td>
<td>286</td>
<td>286</td>
<td>196</td>
<td>196</td>
<td>287</td>
<td>287</td>
<td>193</td>
<td>193</td>
<td>101</td>
<td>101</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>T. x glauca</td>
<td>180</td>
<td>210</td>
<td>278</td>
<td>286</td>
<td>190</td>
<td>196</td>
<td>269</td>
<td>287</td>
<td>179</td>
<td>193</td>
<td>93</td>
<td>101</td>
<td>278</td>
<td>280</td>
</tr>
<tr>
<td>advanced hybrid</td>
<td>176</td>
<td>210</td>
<td>278</td>
<td>286</td>
<td>190</td>
<td>196</td>
<td>287</td>
<td>287</td>
<td>179</td>
<td>193</td>
<td>93</td>
<td>101</td>
<td>278</td>
<td>280</td>
</tr>
</tbody>
</table>

Snow et al. 2010
Population study

Systematic study

Literature

