Population study

Tribsch A., Schönswetter P. & Stuessy T. (2002): Saponaria pumila (Caryophyllaceae) and the Ice Age in the European Alps. American Journal of Botany 89(12): 2024-2033

Reasons for the study

- distribution changes caused by glaciation
- where are glacial refugia located ?
- can the plants survive on nunataks inside the continuous ice shield ?
- are isolated populations product of long-term isolation or present-day long distance dispersal ?

Methods and data analyses

- 33 populations, 5 individuals / population
- AFLP
 - 9 combinations of selective primers tested
 - 3 combinations selected
- Shannon diversity index H_{Sh}
- rare fragments $-f_r$ (occurred in less than 20 individuals)
- unique fragments $-f_u$ (in 1 population only)
- UPGMA (Nei) Popgene
- NJ (Nei & Li) TreeCon
- PCoA (Jaccard) SPSS
- Mantel test R-Package
- AMOVA

Results

- 3 primer combinations 223 fragments
- $H_{\rm Sh}$ increase from W to E (Fig. 2)
- rare and unique fragments mainly in the E (Fig. 3)
- UPGMA, PCoA 4 groups consistent with geographical distribution (E, CE, CW, D) (Fig. 4+5)
- AMOVA (Table 4)
 - about 50% of diversity within populations
 - 22% among population within a region
 - 27% among regions
- Mantel test (Fig. 7)
 - $R_{\rm M} = 0.44$ (isolation by distance)
 - significant differences between E and other groups

Discussion

- 4 groups (PCoA) 4 isolated refugia $? \rightarrow NO$
 - region E partially covered with ice \rightarrow refugium
 - CW completely covered with ice \rightarrow no refugium
- greatest boundary $E \times CE$
 - limestone massive barrier
 - deep valley
 - forested parts
- drastic successive depauperation from the E to W
 - bottleneck (Pleistocene isolation) or founder effect (recent long-dispersal) ?
 - to be distinguished with the presence of unique markers

Geographical pattern of genetic diversity

East (E)

- high within-population diversity, many unique markers
 → i.e., refugium
- population 33 high f_r, low H_{Sh}, i.e., typical "old" depauperate population, isolated at present

Center-West (CW)

- genetically depauperated
- without unique fragments
- recent recolonization (positive correlation with CE and D)

Center-East (CE)

- not clear pattern
- significantly differentiated from E
- moderate to high level of genetic diversity
- 9 unique markers
- suggested refugium (peripheral nunataks) rather than postglacial recolonization

Dolomites (D)

- moderate *H*_{Sh}, rare fragments
- probable refugium
- population 1 extremely depauperated – recently

Reconstruction of distribution changes

- long time center in the Eastern Alps
 - only local glaciation
 - recurrent glacial survival in situ
- CE colonized before the last glaciation
- distribution during last ice age
 - eastern peripheral refugium (E)
 - peripheral nunataks (CE)
 - southern Dolomites (D)
- during postglacial
 - short-distance dispersal without loss of variability
 - stopped by the limestone massif (within E)
 - in the easternmost part fragmentation
 - westernmost part recent *long-distance dispersal* genetic depauperation

Systematic study

Schenk M.F. et al. (2008): Phylogenetic relationships in *Betula* (Betulaceae) based on AFLP markers. *Tree Genetics & Genomes* 4: 911–924

Reasons for the study

- taxonomically controversial group
- reconstruct phylogeny relationships among subgenera and species
- hybridization
- previous studies (matK, ITS and ADH sequences) – limited variation, incongruencies
- use of AFLP for systematic studies

Methods

- 99 samples 23 species, 5 hybrids + 4 outgroup
- flow cytometry ploidy level determination
- AFLP 3 primer combinations
- absence/presence of fragments
 - only intense and well-separated bands scored
 - 8 duplicates as a control

Data analyses

- phenetic analyses (NTSYSpc)
 - Dice & Jaccard similarity coefficients + NJ
 - cophenetic coefficients correlations between matrix and tree – goodness of fit
 - bootstrap 1,000 replicates (PAUP)
- subgen. *Betula*
 - PCoA (Dice)
 - STRUCTURE 2.2 clusters of species, hybrids
 - admixture analysis, correlated allele frequencies
 - K=1-17, 3 replicates, burn-in 50,000 and 100,000 data collection
- phylogenetic (cladistic) analysis (PAUP)
 - limited dataset (without hybrids) + diploids only
 - heuristic search for MP (*most parsimonious*) tree 10,000 bootstrap replicates
 - consensus tree

Results

- 3 primer combinations 321 variable bands
- Dice + NJ best combination (highest cophenetic coefficient)
 - four major clades
- PCoA
 - 3 axes 29.6% of the variation five groups
 - cultivars and hybrids between groups
- STRUCTURE K=3 largely consistent with PCoA
- phylogenetic analysis
 - 12 MPTs of 721 steps strict consensus computed
 - similar topology with NJ

Discussion – AFLP for phylogeny

- sequence markers limited variation
- AFLP
 - polymorphic markers
 - high reproducibility
 - genome wide sampling
- more than 200 parsimony informative markers
- four subgenera distinguished higher support than ITS
- failed to resolved relationships among them
- high congruence between ITS and AFLP
- AFLP complementary information on hybridization

Discussion

four subgenera

- Betulenta B. lenta, B. alleghaniensis
- Betulaster B. maximowicziana, B. nigra?
- Neurobetula
 - Group I B. chichibuensis, B. schmidtii
 - Group II B. costata, B. ermanii, B. davurica, B. utilis... should be merged with subgen. Betula
- *Betula* four/three species groups within subgenus
 - *B. pendula, B. platyphylla, B. populifolia* conspecific?
 - group E intermediate position hybrids/polyploids

Discussion – Evolution

unclear relationships among groups (lack of support)

- occurrence of hybridization and introgression
 - homogenizing effect
 - band sharing shared evolution or sharing parental genomes in natural hybrids – hard to differentiate
- major speciation events within very short time frame
 - homoplasy limits phylogenetic resolution
 - relationships may remain unresolved (forever...)