Systematic study

Wittall J.B. et al. (2010): Finding a (pine) needle in a haystack: chloroplast genome sequence divergence in rare and widespread pines. Molecular Ecology 19, 100-114.

Reasons for the study

- compare level of whole chloroplast differentiation in pines with narrow and broad distribution
- chloroplast differentiation between two subspecies of P. torreyana
- compare differentiation with other species pairs
- test NGS for reliable SNP detection
- divergence dating

Chloroplast genome

- predominant uniparental inheritance paternal in conifers - tracks pollen dispersal
- conservative mutation rate $-100 x$ lower than animal mitochondria
- primarilly microsatellites studied - highly variable but high degree of homoplasy
- A/T rich (~ 62\%) - can cause biased sequencing errors - problem when surveying for rare polymorphism

Study species

Pinus torreyana - 2 populations in California

- mainland - P. torreyana subsp. torreyana (81)
- island - P. torreyana subsp. insularis (86)
P. monticola $\mathrm{S}-\mathrm{N}$
P. lambertiana $\mathrm{S}-\mathrm{N}$
P. lambertiana $\mathrm{N}-\mathrm{P}$. albicaulis
P. ayacahuite - P. flexilis (~ 2200 km distant)
P. cembra - P. sibirica (~ 4800 km distant)

Methods

- 35 separate PCR reactions - to amplify whole chloroplast (Cronn et al. 2008)
- quantification, equimolar pooling, barcoded Illumina libraries
- pooling - 4 libraries (full chloroplast) or 16 (partial)
- de novo assembly (VELVET, EDENA) - minimum depth $5 x$, minimum contig length 100 bp
- alignment of de novo conting to a reference chloroplast (P. ponderosa, P. koraiensis) - CODONCODE
- consensus sequence (BioEdit) + reference -> 'chimeric pseudoreference'
- microread mapped onto pseudoreference (RGA) - minimum depth $2 x, 70 \%$ majority minimum for SNP
- alignment of genomes - MAFFT
- annotation (DOGMA)

Methods

- P. torreyana - SNP validation by Sanger sequencing (regions flanking putative SNPs)
- identification of false-positives and false-negatives
- pairwise comparison of genomes (MEGA)
- minimum depth $25 x, 85 \%$ majority base call
- uncorected pairwise distances
- silent sites (dS - synonymous)
- non-synonymous sites (dN)
- AMOVA - hierarchical structure in P. monticola
- P. torreyana - SNP genotyping using dCAP assay (derived cleaved amplified fragment length polymorphism)
- divergence dating - calibrated with chloroplast-specific mutation rate estimated for Pinus

Results

- 1336085 microreads (33-37 bp) on average per genome
- de novo asseblies consistently interrupted at priming sites
- P. torreyana - 32 putative SNPs (Table 2, Fig. 2, Fig. 3), bi-allelic
- 5 validated by Sanger sequencing
- false positives (not confirmed) - low sequencing depth
- 7 false negatives (consistently present in Sanger sequences) - no novel SNPs
- uneven distribution of variable sites across genome
- differences between genomes (Table 3)
- no-P. sibirica vs. P. cembra
- 382 - within P. lambertiana
- divergence dates
- spatial differentiation
- P. torreyana - 5 validated SNPs fixed between populations
- 10 P. monticola individuals - 9 distinct haplotypes - no geographic pattern (in contrast to nuclear differentiation)

Discussion

- chloroplast genome-wide sequence variation is very low in pine species - all comparison fewer than 18 SNPs
- even for geographically widespread species
- low variation in P. torreyana is not due to its rarity but it is a norm for Pinus
- > full chloroplast genomes are required for robust resolution
- uneven distribution of variation
- no best highly variable region region
- > again plastome scale approach necessary
- chloroplast introgression of P. albicaulis to northern population of P. lambertiana
- future prospects - comparison of microsatellite and NGS analysis - longer reads necessary for direct comparison

