Reasons for the study

• compare level of whole chloroplast differentiation in pines with narrow and broad distribution
• chloroplast differentiation between two subspecies of *P. torreyana*
• compare differentiation with other species pairs
• test NGS for reliable SNP detection
• divergence dating
Chloroplast genome

- Predominant uniparental inheritance – paternal in conifers – tracks pollen dispersal
- Conservative mutation rate – 100x lower than animal mitochondria
- Primarily microsatellites studied – highly variable but high degree of homoplasy
- A/T rich (~ 62%) – can cause biased sequencing errors – problem when surveying for rare polymorphism
Study species

Pinus torreyana – 2 populations in California
- mainland – *P. torreyana* subsp. *torreyana* (81)
- island – *P. torreyana* subsp. *insularis* (86)

P. monticola S – N

P. lambertiana S – N

P. lambertiana N – *P. albicaulis*

P. ayacahuite – *P. flexilis* (~2200 km distant)

P. cembra – *P. sibirica* (~4800 km distant)
Methods

- 35 separate PCR reactions – to amplify whole chloroplast (Cronn et al. 2008)
- quantification, equimolar pooling, barcoded Illumina libraries
- pooling – 4 libraries (full chloroplast) or 16 (partial)
- de novo assembly (VELVET, EDENA) – minimum depth 5x, minimum contig length 100 bp
- alignment of de novo contig to a reference chloroplast (P. ponderosa, P. koraiensis) – CODONCODE
- consensus sequence (BioEdit) + reference -> ‘chimeric pseudoreference’
- microread mapped onto pseudoreference (RGA) – minimum depth 2x, 70% majority minimum for SNP
- alignment of genomes – MAFFT
- annotation (DOGMA)
Methods

- **P. torreyana** – SNP validation by Sanger sequencing (regions flanking putative SNPs)
 - identification of false-positives and false-negatives

- pairwise comparison of genomes (MEGA)
 - minimum depth 25x, 85% majority base call
 - uncorrected pairwise distances
 - silent sites (d_S – synonymous)
 - non-synonymous sites (d_N)

- AMOVA – hierarchical structure in **P. monticola**

- **P. torreyana** – SNP genotyping using dCAP assay (*derived cleaved amplified fragment length polymorphism*)

- divergence dating – calibrated with chloroplast-specific mutation rate estimated for **Pinus**
Results

• 1 336 085 microreads (33-37 bp) on average per genome
• de novo assemblies consistently interrupted at priming sites
• *P. torreyana* – 32 putative SNPs (Table 2, Fig. 2, Fig. 3), bi-allelic
 – 5 validated by Sanger sequencing
 – false positives (not confirmed) – low sequencing depth
 – 7 false negatives (consistently present in Sanger sequences) – no novel SNPs
• uneven distribution of variable sites across genome
• differences between genomes (Table 3)
 – no – *P. sibirica* vs. *P. cembra*
 – 382 – within *P. lambertiana*
 – divergence dates
• spatial differentiation
 – *P. torreyana* – 5 validated SNPs fixed between populations
 – 10 *P. monticola* individuals – 9 distinct haplotypes – no geographic pattern (in contrast to nuclear differentiation)
Discussion

- chloroplast genome-wide sequence variation is very low in pine species – all comparison fewer than 18 SNPs
 - even for geographically widespread species
 - low variation in *P. torreyana* is not due to its rarity but it is a norm for *Pinus*
 - > full chloroplast genomes are required for robust resolution

- uneven distribution of variation
 - no best highly variable region region
 - > again plastome scale approach necessary

- chloroplast introgression of *P. albicaulis* to northern population of *P. lambertiana*

- future prospects – comparison of microsatellite and NGS analysis – longer reads necessary for direct comparison