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Phylogenetics of the mycoheterotrophic genus Thismia
(Thismiaceae: Dioscoreales) with a focus on the Old
World taxa: delineation of novel natural groups and
insights into the evolution of morphological traits
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Thismia is a genus of > 80 mycoheterotrophic species characterized by a peculiar appearance and complex floral
morphology. A significant proportion of the species and morphological diversity of Thismia has only been uncovered
in the past two decades, and new discoveries continue to be made. Given that many new data have recently become
available, and the most comprehensive taxonomic revision of the genus from 1938 addresses less than half of the
currently known species, previous hypotheses for species relationships and infrageneric taxonomic classification in
Thismia was in need of review. Extensive molecular phylogenetic studies of Thismia at the genus level have never
been presented. We investigate the phylogenetic relationships of 41 species (and one variety) of Thismia from the
Old World. Our study comprises 68 specimens (for 28 of which the data were newly generated), including outgroup
taxa broadly representing Thismiaceae (= Burmanniaceae p.p. sensu APG 1V, 2016), and is based on two nuclear
and one mitochondrial marker. We use maximum likelihood and Bayesian inference to infer relationships among
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the taxa. We also constructed a morphological dataset of 12 mostly floral characters, comparing these characters
to hypotheses based on molecular evidence to identify putative synapomorphies for major clades and to discuss
hypotheses regarding the evolution of structural traits in the genus. Our analyses indicate that the majority of
currently accepted infrageneric taxa of Thismia are polyphyletic. We find support for the monophyly of the Old World
group, in which we recognize five well-supported lineages (clades); the only New World species studied appears to
be related to the Neotropical genus Tiputinia. Ancestral state reconstructions demonstrate that the evolution of
most morphological characters was homoplastic, but we identify characters that provide each of the five clades of
Old World Thismia with a unique morphological description. The geographical distribution of the species under
study is also shown to be consistent with the major clades. Our investigation provides a phylogenetic basis for the
development of a novel sectional classification of Thismia reflecting morphological and geographical traits.

KEYWORDS: floral traits — high-throughput sequencing — molecular phylogenetics — monocots — non-

photosynthetic plants — South-East Asia.

INTRODUCTION

Thismia Griff. (Thismiaceae) (Griffith, 1845),
commonly known as the fairy lanterns, is a genus of
fully mycoheterotrophic, non-photosynthetic herbs
with a disjunct distribution range split between
tropical and subtropical Asia to temperate Australia
and (mostly) tropical America (Maas-Van de Kamer,
1998; Merckx et al., 2013; Merckx & Smets, 2014).
The highest species diversity of Thismia is found in
Borneo and the Malay Peninsula (Chantanaorrapint,
2012; Tsukaya & Okada, 2012; Sochor, Hrones &
Dancak, 2018b). Thismia spp. are remarkable for
their peculiar appearance and the morphology of the
flowers, which are distinctive and at the same time
quite diverse (Fig. 1). Above the inferior ovary, there is
a prominent hypanthium (also called a flower tube or
flower chamber) that bears six tepals and six stamens.
The stamens hang down inside the hypanthium
and thus are invisible from the outside. The anthers
usually fuse postgenitally with each other into a tube
by their connectives and possess various hairs and
appendages. The three outer tepals are always free
(or absent), whereas the inner tepals are sometimes
fused into a roof-like or hat-like structure called a
mitre (Fig. 1B-H). One or both whorls of tepals often
bear filiform or cylindrical appendages (Fig. 1A, C, D,
F, I-L) (Maas-Van de Kamer, 1998; Merckx et al., 2013;
Merckx & Smets, 2014).

A member of Dioscoreales, Thismia is currently
placed by many researchers in Thismiaceae (Stevens,
2001; Merckx et al.,2013,2017; Lam et al., 2018; Sochor
et al., 2018b). However, phylogenetic relationships in
Dioscoreales are still largely unresolved at the family
level and, consequently, delimitation of the order into
families remains unstable (e.g. Kumar et al., 2017;
Chantanaorrapint & Suddee, 2018). In the APG system
(APG III, 2009; APG IV, 2016), a broad understanding
of families of Dioscoreales was provisionally accepted,
with Thismiaceae included in Burmanniaceae and
Taccaceae in Dioscoreaceae (but see Lam, Merckx &
Graham, 2016). However, further studies are needed

to resolve existing incongruences: some molecular
phylogenetic studies have shown that representatives
of Thismiaceae are rather distantly related to
Burmanniaceae s.s., which led to consideration of
the former as a separate family (Merckx et al., 2006,
2009; Merckx, Huysmans & Smets, 2010; Lam et al.,
2016, 2018), whereas other molecular phylogenetic
reconstructions recover Thismiaceae as paraphyletic
with respect to Tacca J.R.Forst. & G.Forst.,
traditionally accepted as the only genus of Taccaceae
(Merckx & Bidartondo, 2008; Merckx et al., 2009,
2010; Merckx & Smets, 2014). The precise topology
differs considerably depending on the DNA regions
and methods of reconstruction (Merckx et al., 2009).
Here, while acknowledging the uncertainty relating to
phylogenetic relationships in the group, we choose to
recognize Thismiaceae as a separate family.

To maintain Thismiaceae and make it monophyletic,
Hunt, Steenbeeke & Merckx (2014) suggested
excluding Afrothismia Schltr. However, appropriate
taxonomic and nomenclatural changes necessary for
the family placement of Afrothismia have never been
published. Thismiaceae, including Afrothismia, are
subdivided into five genera, of which Thismia is by
far the largest, comprising almost 80% of the family.
So far, > 80 species of Thismia have been accepted
(Dancak et al., 2018; Sochor et al., 2018a; Suetsugu
et al., 2018; Chantanaorrapint et al., 2019; Siti-
Munirah & Dome, 2019), and several new species are
described each year. The other genera are Afrothismia
with 16 species, Oxygyne Schltr. with six species and
the monotypic Tiputinia P.E.Berry & C.L.Woodw. and
Haplothismia Airy Shaw (Merckx et al., 2013; Cheek
et al., 2018; Cheek, Etuge & Williams, 2019). Similar
to the situation at the family level, the monophyly
of Thismia also represents an open question:
according to phylogenetic analyses of molecular and
morphological data sets, certain New World Thismia
spp. do not group with the rest of the genus (Merckx
et al., 2006, 2009; Yokoyama et al., 2008; Merckx &
Smets, 2014).
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Figure 1. Representative diversity of flowers of Asian Thismia. A, T. abei. B, T. thaithongiana. C, T. minutissima. D,
T. viridistriata. E, T. kelabitiana. F, T. clavigera. G, T. acuminata. H, T. mirabilis. I, T. hongkongensis. J, T. gardneriana. K,
T. annamensis. L, T. inconspicua. Photographs. A, K. Suetsugu; B, F, H, J, S. Chantanaorrapint; C, D, E, G, L, M. Sochor; I,

S.S. Mar; K, M.S. Nuraliev.

The most recent taxonomic revision of Thismia at a
worldwide scale was published by Jonker (1938; see also
Jonker, 1948), who presented a detailed classification
and introduced a number of sections and subsections.
Since then, the number of species currently assigned to
Thismia has more than doubled, and some of the newly
described species show combinations of morphological
characters and geographical patterns that do not fit

within the infrageneric framework established by
Jonker (Thiele & Jordan, 2002; Nuraliev et al., 2014,
2015). The cladistic analysis of morphological features
performed by Merckx & Smets (2014) demonstrated
that some infrageneric taxa are not monophyletic,
which may be consistent with a degree of convergence
in the morphological traits used in traditional
systems of Thismia. To facilitate further phylogenetic
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investigations of Thismia, Kumar et al. (2017)
compiled an updated version of the traditional system
in which they adopted the modifications suggested by
Maas et al. (1986) and Merckx & Smets (2014), listing
all of the species known at the time of their work. Only
some groups of Thismia, mainly from Australia and
Borneo (Sarawak state of Malaysia and Brunei) and
totalling c. 20 species, have been studied to date using
molecular phylogenetics (Hunt et al., 2014; Merckx &
Smets, 2014; Merckx et al., 2017; Kumar et al., 2017,
Sochor et al., 2018b). These studies confirm that the
current taxonomic system does not reflect actual
phylogenetic relationships, and they clearly indicate
the necessity for a large-scale reconstruction with
inclusion of representatives from all geographical
areas and morphological types.

Here, we study the phylogenetics of Thismia with
a sampling of 42 species and a focus on mainland
South-East Asia. We use the results to investigate
the evolution of some morphological traits that are
traditionally used for circumscription of infrageneric
taxa in the genus. This study is a precursor to a
comprehensive taxonomic revision of Thismia based
on the current phylogenetic views and reflecting the
biological characteristics of its species.

MATERIAL AND METHODS
TAXON SAMPLING

Data from 42 Thismia spp. were used in this study.
Nuclear and mitochondrial sequences for 25 species
were generated de novo, those of 20 species (and one
variety) were obtained for the first time. Sequences
for a further 22 species were obtained from GenBank.
Based on Merckx & Smets (2014) and Hunt et al. (2014),
12 representatives of Thismiaceae, Burmanniaceae,
Dioscoreaceae and Taccaceae were included as
outgroup taxa (Appendix 1).

MOLECULAR TECHNIQUES AND ANALYSIS

DNA was extracted from herbarium and silica gel-
dried material using the CTAB-based method (Doyle
& Doyle, 1987) with the following modifications:
chloroform extraction was performed twice. We
used three markers: two nuclear markers, the
nuclear ribosomal ITS1-2 region (including internal
transcribed spacer 1, the 5.8S rRNA gene and internal
transcribed spacer 2; together referred to as ITS), a
part of the 18S rRNA gene and one mitochondrial
region, a part of the a¢pl gene. These regions have
previously been successfully used for phylogenetic
analysis of mycoheterotrophic plants, including
Thismia (Merckx et al., 2017). For most of the
samples, we used the following PCR primers: 18S-F

(TTTGAAGAAATTAGAGTGCTCAAAG) and 18S-R
(CTTCCTCTAAATGATAAGGTTCA) for the 18S
rRNA gene, atp1-F (AAGTGGATGAGATCGGTCGAG)
and atpI-R (AGTGGCATTCGATCACAGAAGC) for
atpl, and ITS5 and ITS4 (White et al., 1990; Baldwin,
1992) for the ITS. PCR was performed using Q5 mix
(New England Biolabs, USA). The PCR programme
consisted of 30 cycles, with each cycle as follows:
10 s at 95 °C, 25 s at 58 °C and 40 s at 72 °C, with
an initial denaturation of 1 min 30 s at 95 °C and the
final extension for 5 min at 72 °C. Amplicons were run
on a 0.8% agarose gel; those samples that produced a
clear single band of the expected size were retained for
sequencing. Samples were purified using Ampure XP
beads (Beckman-Coulter, USA) and sequenced using
ABI PRISM BigDye Terminator v.3.1 kit on an Applied
Biosystems 3730 DNA Analyser (Thermo Fisher,
USA). For the specimens of T. minutissima Dancék,
Hrones$ & Sochor, T. nigra Danc¢dk, Hrones & Sochor,
T. viridistriata Sochor, Hrone§ & Dancdk and T. sp.
Andulau, the primers, PCR programme and conditions
of DNA purification and sequencing were selected
following Sochor et al. (2018b). For the specimens
of T. abei (Akasawa) Hatus., T. javanica J.J.Sm. and
T. kelabitiana Dancéak, Hrone§ & Sochor, the following
primers were used: NS1 and NS2 (M13 tailed), NS3
and NS4 (M13 tailed), and NS5 and NS8 (without M13
tail) for 18S (White et al., 1990; Oetting et al., 1995),
ITS1 and ITS4 (M13 tailed) for ITS (White et al., 1990;
Oetting et al., 1995), atp1-F-Al and atp1-B-A1 (M13
tailed) for atp1 (Oetting et al., 1995; Davis et al., 2004).
The PCR programme used consisted of 35 cycles, with
each cycle as follows: 15 s at 94 °C, 30 s at 44 °C and
40 s at 72 °C, with the initial denaturation for 3 min at
94 °C, and the final extension for 7 min at 72 °C.

For several species for which amplification and/
or sequencing of marker regions was unsuccessful,
we employed the approach of genome skimming,
i.e. low-coverage genome sequencing (Straub et al.,
2012). This approach has also been successfully used
to recover single-gene data from plastid genomes of
Thismiaceae (Lam et al., 2016). This was performed
using preparation of shotgun genomic libraries and
sequencing on an Illumina platform.

DNA was fragmented using a Covaris S220
sonicator (Covaris, USA) with the following settings:
peak power 230, duty cycle 10%, with 200 cycles per
burst. These parameters enable fragmentation to the
length optimal for library preparation (200—-400 bp).
Fragmented DNA was prepared for sequencing using
a NEBNext Ultra II DNADNA Library Prep Kit for
Illumina kit (New England Biolabs, USA). Indexing
was performed using NEBNext Multiplex Oligos
for Illumina (Index Primers Set 1 for T. okhaensis
Luu, Tich, G.Tran & Dinh, Index Primers Set 2
for T. annamensis K.Larsen & Aver., T. hexagona
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Dancéak, Hrones, Kobrlova & Sochor and 7. mucronata
Nuraliev). Sequencing was performed on MiSeq for
T. mucronata using v.2 chemistry and read length
equal to 255, in paired-end mode and on HiSeq 2500
for other species using v.4 chemistry and read length
equal to 125, in paired-end mode. Demultiplexing
was performed using CASAVA-1.8.2 (Illumina) for
MiSeq data and bcl2fastq v.2.17.1.14 (Illumina) for
HiSeq2500 data. Reads were then trimmed using CLC
Genomics Workbench v.9.5.4 and assembled using
the same program with the following parameters:
word size and bubble size = default, minimal contig
length = 1000, mismatch cost = 2, insertion cost = 3,
deletion cost = 3, length fraction = 0.98 and similarity
fraction = 0.99. Contigs containing atp1, 18S and ITS
were selected based on a BLAST search using Thismia
sequences available in GenBank as a query (e-value
threshold 10-, BLASTN v.2.2.10). All sequences that
were found as a result of this search were searched
back against NCBI nr database, to identify and exclude
contaminating sequences.

Multiple sequence alignments were made for the
three phylogenetic markers separately. The alignments
were performed using the online version of MAFFT 7
(Katoh & Standley, 2013) with all parameters set to
the default values, except for the parameter ‘Adjust
direction according to the first sequence’, which was
switched on, allowing for sequences to be aligned
in the proper direction in case they were reverse
complemented in the input FASTA file. Poorly aligned
columns were removed by the online version of
Gblocks v.0.91b (Castresana, 2000) with the default
parameters, except for the ‘Allow gap positions within
the final blocks’ and ‘Allow less strict flanking positions’,
which were switched on to make Gblocks less severe
in determining which columns were aligned poorly.
The alignments were then concatenated by the script
geneStitcher.py from https:/github.com/ballesterus/
Utensils. In cases where some of the markers were not
sequenced for a specimen, corresponding places in the
concatenated alignment were filled with gap symbols.
The percent of variable sites in the alignments was
calculated by AMAS (Borowiec, 2016). The multiple
sequence alignments (before and after pruning by
GBLOCKS) are available at https://doi.org/10.6084/
m9.figshare.8864936.

Phylogenetic reconstructions were performed for
the concatenated alignments of the three markers
(ITS+18S+atp1), for the concatenated alignments of
ITS+18S, for the concatenated alignments of 18S+aip1
and for the alignments of the three markers separately.
For the concatenated alignments, the optimal
partitioning for the phylogenetic reconstruction
was estimated by the program PartitionFinder 2.1.1
(Lanfearet al.,2017) under the GTR+Gamma evolution

model, where possible partitions corresponded to
individual markers. The best partitioning was selected
by the corrected Akaike information criterion (AICc).
In all cases, the best partition was the one where all
markers were treated separately.

The maximum likelihood (ML) phylogenetic
reconstruction was performed by RAxML v.8.2.4
(Stamatakis, 2014), using 20 starting maximum-
parsimony trees. The number of bootstrap
pseudoreplicates for the bootstrap analysis was selected
by RAxML automatically using the majority-rule
consensus tree criterion (‘autoMRE’). Substitution rates
for the partitions were linked. Linking the substitution
rates of partitions allows to estimate branch lengths
even for samples that lack sequences of some markers.

The Bayesian phylogenetic reconstruction was
performed by MrBayes v.3.2.7 (Ronquist et al., 2012)
under the GTR+Gamma model of sequence evolution,
with four Markov chains, each of 2 500 000 generations,
and sampling frequency of 500 generations.
Substitution rates for the partitions were linked.
Majority-rule consensus trees were calculated after
excluding the first 25% of samples. Effective sample
sizes were evaluated using Tracer v.1.7.1 (Rambaut
et al., 2018). The effective sample sizes were > 200 for
all statistics in all datasets, suggesting that the run
length was adequate.

Maximum-parsimony phylogenetic reconstruction
was not performed because the method of maximum
parsimony has been shown to result in inadequate
reconstructions for mycoheterotrophic plants (e.g.
Lam et al., 2018). Particularly, the sensitivity of
parsimony analysis in Thismiaceae to long-branch
attraction artefacts using the markers employed here
was demonstrated by Merckx et al. (2009). ML-based
analyses can also be affected by the long-branch
attraction, but to a lesser extent (Swofford et al., 2001).

The use of markers from different genomes in
combination for phylogenetic reconstruction may
be inappropriate because such markers may have
different phylogenetic histories (Rubinoff & Holland,
2005). However, a comparison of ML and Bayesian
trees built by the nuclear markers (ITS+18S) and the
mitochondrial marker (atpI) showed that there are no
bipartitions significantly (bootstrap support at least
80% or posterior probability at least 95%) different for
these two types of markers. Therefore, the combined
analyses of the nuclear and mitochondrial markers are
justified. The trees were drawn by TreeGraph v.2.14.0-
771 beta (Stover & Miiller, 2010).

RECONSTRUCTION OF MORPHOLOGICAL EVOLUTION

To explore morphological evolution, the significance
of morphological characters in diagnosing the natural
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groups obtained here and the ancestral character states,
we created and matched a species-level morphological
data matrix (Appendix 2) for species present in the
molecular phylogenetic analyses. The morphological
data were taken from the species protologues and from
the specimens cited in Appendix 1.

Most of the characters and their states (Appendix 3)
have been taken from the taxonomic literature.
Character scoring was performed according to Brazeau
(2011) and generally followed the cladistic analysis of
morphological data set by Merckx & Smets (2014). In
contrast to Merckx & Smets (2014), we treated the
diversity of underground parts as a single character
with seven conditions to avoid mixing the cases
that are similar in appearance but morphologically
different, such as tubers and tuberous roots. For the
structure of the inner perianth whorl, we assigned
three conditions instead of the two commonly used:
tepals free; tepals fused into a mitre (irrespective of
tepal aestivation); and tepals overlap forming a loose
dome (without fusion). We did not make a distinction
between the appendages of free inner tepals and
those of a mitre (including dorsal appendages or those
arising from a central point); instead, we treated
these features as a single character, i.e. absence or
presence of appendages of inner tepals. We also
specified the conditions of this character and grouped
minute appendage-like protuberances (< 1.5 mm
long), e.g. in T. brunneomitra Hrones, Kobrlova &
Danc¢dk and T. mucronata, together with the absence
of appendages. Finally, for the stamen number, we
assigned both taxa characterized by three stamens in
a flower (Burmannia L. and Oxygyne) with the same
condition of this character, because in both genera the
stamens represent the inner whorl of the androecium.
Although the stamens of Oxygyne have been stated by
some authors (e.g. Cheek et al., 2018) to be arranged
opposite the outer tepals, we have observed that in
fact they alternate with the stigmas, which means
that the stamens are arranged opposite the inner
whorl of tepals.

ML ancestral reconstruction analyses were
performed in Mesquite v.3.51 (Maddison & Maddison,
2006, 2018), employing the Markov k-state 1
(Mk1) parameter model of morphological character
evolution. The Bayesian majority-rule tree based on
the ITS+18S+atpl combined dataset was used for the
ancestral state reconstructions. Additionally, only one
terminal per species was retained, transforming the
specimen tree into a putative species tree. Specimens
that were not decidedly identified to the species
level were discarded from the analysis. The trees
with ancestral state reconstructions were drawn by
Mesquite. As well as the Mk1 model, we also tested
the AsymmMk model. For each binary character, we
compared these two models by the likelihood ratio test.

Prior to a multiple hypothesis testing correction, there
were two characters for which the AsymmMk model
was significantly (P value < 0.05) better than the
Mk1 model, namely, the characters ‘Transverse bars
inside the hypanthium’ and ‘Foveae on mitre surface’.
However, after the Benjamini—Hochberg correction for
multiple testing all differences became non-significant
(g value > 0.05).

RESULTS
SEQUENCING

Using Sanger sequencing we obtained the sequences
for all three markers for 17 Thismia spp., and we
obtained the sequences for either one or two markers
for eight additional species. In addition, we analysed
genome skimming data for four specimens. For three
samples, Sanger sequencing was unsuccessful for all
three markers: T annamensis (Averyanov et al. HLF
5510, the type specimen), T. hexagona (Hrone$ s.n.)
and T okhaensis. For T. mucronata, the type specimen
(Nuraliev 813) was studied using a genome skimming
approach, whereas the other specimen (Nuraliev 1009)
was studied using Sanger sequencing. Sequences of
Thismia tentaculata K.Larsen & Aver. were assembled
from the sample for which complete plastome
structure was reported earlier (Lim et al., 2016). Using
raw reads from their study, we assembled high copy
regions and extracted atpl, 18S and ITS sequences.
The results of the BLAST search that were used to
identify marker regions in the contigs indicated the
presence of contaminating sequences in the samples
of T. hexagona and T. okhaensis. The examination of
BLAST results allowed to identify possible source
of contamination (see also Supporting Information,
Supplementary Table 1).

PHYLOGENETIC ANALYSIS

The main characteristics of the alignments are listed
in Table 1. The ML and Bayesian approaches for the
combined dataset resulted in congruent tree topologies
(Figs 2, 3). Among the analyses of separate markers
(Supporting Information, Supplementary Figs 1-6),
those based on the 18S gene (Supporting Information,
Supplementary Figs 3, 4) were most congruent with
the three-marker trees and showed lower support for
some clades, including some small clades within the
five major clades (see below) and the relationships
between the major clades; the analyses based on the
atpl gene (Supporting Information, Supplementary
Figs 5, 6) resulted in trees generally similar to the
three-marker trees with a number of differences in
topology, such as different relationships between the
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Table 1. Multiple alignment statistics.

Marker Alignment Alignment length Number of variable sites in Percent of variable sites in
length (bp) after pruning by the alignment after pruning by the alignment after pruning
Gblocks (bp) Gblocks (bp) by Gblocks
ITS 1597 321 233 67%
18S rDNA 2827 1712 405 23.7%
atpl 1571 1265 239 18.9%

major clades and different position of several species
(T. gardneriana Hook.f. ex Thwaites, T. mucronata,
T. nigricans Chantanaorr. & Sridith, 7. viridistriata);
the analyses based on the ITS region (Supporting
Information, Supplementary Figs 1, 2) were the
most different, especially in the position of the major
clades and the species T. hongkongensis Mar &
R.M.K.Saunders and T. panamensis (Standl.) Jonker,
although they still supported most of the major clades.

In the trees based on the combined dataset,
T. panamensis, the only New World species of Thismia
included in the analysis, grouped together with the
monotypic Neotropical Tiputinia. The others formed
a well-supported clade referred to here as the Old
World clade [posterior probability (PP) 1.00, bootstrap
percentage in the maximum likelihood analysis
(BP,,) 100]. Five well-supported major clades were
identified in the Old World clade. Clade 1 (PP 1.00,
BP,,; 100) comprised six species, three of which inhabit
mainland East and South-East Asia (T. gongshanensis
Hong Qing Li & Y.K.Bi, T. nigricoronata Kumar
& S.W.Gale, T. thaithongiana Chantanaorr. &
Suddee) and three others inhabit the islands of
East Asia (T abei, T. huangii P.Y.Jiang & T.H.Hsieh,
T. taiwanensis Sheng Z.Yang, R.M.K.Saunders &
C.J.Hsu). Clade 2 (PP 1.00, BP,; 100) consisted
of four species from south-eastern Australia and
New Zealand [T. clavarioides K.R.Thiele, T. hillii
(Cheeseman) N.Pfeiff., T. megalongensis C.A.Hunt,
G.Steenbee. & V.Merckx, T. rodwayi F.Muell.] and
‘Thismia sp.’, a taxon from New South Wales of
uncertain taxonomic status. Clade 3 (PP 0.95, BP,
97) comprised seven Bornean species (7. acuminata
Hrones, Dancak & Sochor, T. betung-kerihunensis
Tsukaya & H.Okada, T. brunneomitra, T. clavigera
F.Muell., T. kelabitiana, T. laevis Sochor, Danc¢dk &
Hrones, T. nigra); T. clavigera also occurs in Peninsular
Thailand and Sumatra (but see Suetsugu et al., 2018).
Clade 4 (PP 1.00, BP,;; 99) included six species from
Vietnam and Thailand (7. angustimitra Chantanaorr.,
T. mirabilis K.Larsen, T. mucronata, T. nigricans,
T. okhaensis, T. puberula Nuraliev). Clade 5 (PP 1.00,
BP,,, 100), the largest clade, comprised ten species,
ranging from the Indochinese Peninsula to Borneo
(T alba Holttum ex Jonker, T. annamensis, T. aseroe

Becc., T. bryndonii Tsukaya, Suetsugu & Suleiman,
T. cornuta Hrone§, Sochor & Dancak, T. filiformis
Chantanaorr., 7. hexagona including var. grandiflora
Tsukaya, Suleiman & H.Okada, T. inconspicua Sochor
& Dancak, T. neptunis Becc., T. pallida Hrones, Danc¢ak
& Rejzek) and ‘Thismia sp. Andulau’, a taxon from
Brunei of uncertain taxonomic status. In addition,
several species occupied rather isolated and unstable
positions: these are T. minutissima, T. viridistriata,
T. hongkongensis, T. gardneriana, T. tentaculata and
T. javanica. Within ML and Bayesian inference, the
following topology was recognized as follows: clade 1;
clade 2; T. minutissima; clade 3 + T. viridistriata; clade
4 and the remaining Old World Thismia spp.

To check possible infraspecific variability, some
species were studied using material from more than
one population. Most of these species showed no or
few (one or two substitutions) differences between
sequences obtained from different accessions, and
almost all species represented by more than one
accession formed monophyletic groups. The only
exception is 7. mucronata, which showed uncertain
relationships with other species of clade 4.

EVOLUTION OF MORPHOLOGICAL CHARACTERS

A matrix with 12 morphological characters was
created. One of them (the number of stamens) is
invariable in the Old World clade, whereas the
others are mostly homoplastic according to the ML
state reconstruction (Figs 4-7; Supplementary trees;
Supplementary Mesquite file). Nevertheless, some
characters are useful for defining certain natural
(monophyletic) groups within the Old World clade.
Clade 1 is unique in the absence of interstaminal
glands and absence of a wing-like (often called
lateral) appendage of a connective; these features
are found only in this clade and characterize all of
its species. Clade 1 uniformly shows the absence of
transverse bars inside the hypanthium. Finally, it is
the only clade that comprises species with free stamen
connectives (along with species with the connectives
fused into a tube). Clade 2 is characterized by the
absence of transverse bars inside the hypanthium, the
presence of appendages of inner tepals, inner tepals
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Figure 2. Bayesian tree obtained from the analysis of the combined ITS+18S+atp1 dataset. Numbers near branches are
posterior probabilities (PP); asterisks in front of these numbers indicate the clades that are not supported by ML analysis
(Fig. 3). The representatives of clades 1-5 illustrated with photographs are indicated by stars. Photographs. Thismia

© 2020 The Linnean Society of London, Botanical Journal of the Linnean Society, 2020, 193, 287-315

20z Jaquieoaq Lg Uo 1senB Aq | 1/G18G//8Z/€/E6/O10IIE/UBBUUINOG/WOO"dNO"DILSPEIE/:SA]Y WOI) POPEO|UMOQ



PHYLOGENETICS OF THISMIA 295

fused into a mitre and the absence of mitre foveae.
Clade 3 is characterized by coralliform roots (which
represent its synapomorphy and unique feature), inner
tepals fused into a mitre, absence of mitre foveae; it
comprises the only two species of Thismia included in
our analysis that show free mitre appendages arising
from a central point. Clade 4 is characterized by the
absence of transverse bars inside the hypanthium, the
absence of appendages of outer and inner tepals and
inner tepals fused into a mitre. The presence of mitre
foveae is a unique feature of this clade (most likely,
a synapomorphy), which occurs in four out of its six
species (absent in T. mucronata and T. okhaensis).
Clade 5 is characterized by free inner tepals and the
presence of appendages of outer and inner tepals.

DISCUSSION

PHYLOGENETICS AND TRADITIONAL TAXONOMY OF
THISMIA

Our taxonomic sample (42 out of ¢. 80 species
known worldwide) covers a significant portion of
the morphological variability and geographical
range of Thismia in the Old World. Additionally,
our analyses generally resolved major groups with
strong branch support. Thus, our findings will allow
for the morphology-based classification systems to be
evaluated in a phylogenetic framework and provide
insight into patterns of morphological evolution with
emphasis on Asian and Australian representatives.

Thismia is currently subdivided into two subgenera,
of which Thismia subgenus Thismia accommodates
all of the Old World species plus T. americana N.Pfeiff.
and subgenus Ophiomeris (Miers) Maas & H.Maas
comprises all of the Neotropical species (Maas et al.,
1986; Merckx & Smets, 2014; Kumar et al., 2017).
Similar to recent studies (Merckx et al., 2006, 2009;
Yokoyama et al., 2008; Merckx & Smets, 2014), our
results suggest that Thismia is polyphyletic, with
Thismia subgenus Ophiomeris (represented here by
a single species, T. panamensis) being only distantly
related to subgenus Thismia. The Old World clade in
our trees corresponds to subgenus Thismia, tentatively
confirming the monophyly of this taxon.

The subdivisions of Thismia subgenus Thismia
accepted in Kumar et al. (2017) appear to be largely
polyphyletic according to our molecular phylogenetic
reconstructions. Of the six sections of this subgenus,
Thismia section Scaphiophora (Schltr.) Kumar &
S.W.Gale comprising two species, is absent from
our analysis. Section Geomitra (Becc.) Kumar &

S.W.Gale, which consists of T. betung-kerihunensis
and 7. clavigera, formed a monophyletic group
in clade 3. Representatives of Thismia sections
Rodwaya (Schltr.) Jonker and Glaziocharis (Taub.
ex Warm.) Hatus. are scattered between clades 1
and 2. Transfer of the only Asian species of section
Rodwaya, T. huangii, to section Glaziocharis and of
the only Australian species of section Glaziocharis,
T. clavarioides, to section Rodwaya, would make
section Glaziocharis and section Rodwaya fully
conform with clades 1 and 2. This modification of
sectional taxonomy would also be in agreement
with several morphological traits (presence of
stamen appendages and presence of interstaminal
glands). The species of the large Thismia section
Sarcosiphon (Blume) Jonker are mainly placed in
clade 4, but we also recovered at least one in clade
3. The type section, Thismia section Thismia is
further subdivided into two subsections. Clade 5
corresponds to section Thismia subsection Odoardoa
Schlechter (except for inclusion in the clade of
T. neptunis, classified in section Thismia subsection
Brunonithismia Jonker); most of the other species
of subsection Brunonithismia (i.e. T. gardneriana,
T. hongkongensis, T. javanica, T. tentaculata) occupy
isolated and rather poorly supported positions,
mostly close to clades 4 and/or 5.

Our data confirm the idea that many of recently
described species have been artificially pushed into the
existing taxonomic subdivisions of Thismia of Jonker
by various authors, including Kumar et al. (2017). In
fact, some recent discoveries represent completely
novel lineages of the genus that most likely merit
attribution to separate (undescribed) infrageneric
taxa. This is particularly the case for representatives
of clade 4 (and to a lesser extent clade 3): of the
species found in clade 4, T. mirabilis was described
in 1965, whereas all the other species were described
in the 21%t century. This clade was thus completely
unknown at the time of Jonker’s work (1938, 1948),
which is still the widely accepted classification
scheme for Thismia. In clade 3, only some of the
species groups were known to Jonker; in our study,
they are represented by a single species, T. clavigera,
whereas several other species [T. clandestina
F.Muell., T. crocea (Becc.) J.J.Sm. and T. episcopalis
F.Muell.] are evidently close to some species of clade
3 (i.e. to T. laevis, T. acuminata and T. brunneomitra;
Hrones et al., 2015; Sochor et al., 2018b) on the basis
of morphology. As T. clandestina is the type species
of section Sarcosiphon, our data suggest that the
representatives of clade 4 were incorrectly attributed

filiformis: S. Chantanaorrapint; 7. mucronata: M.S. Nuraliev; T. brunneomitra: M. Hrones; T. rodwayi: V.S.F.T. Merckx;

T. gongshanensis: H.-Q. Li.

© 2020 The Linnean Society of London, Botanical Journal of the Linnean Society, 2020, 193, 287-315

20z Jaquieoaq Lg Uo 1senB Aq | 1/G18G//8Z/€/E6/O10IIE/UBBUUINOG/WOO"dNO"DILSPEIE/:SA]Y WOI) POPEO|UMOQ



296 E.A SHEPELEVAETAL.

98 Thismia hexagona 1
100

Thismia hexagona 2

Thismia hexagona var. grandiflora
Thismia bryndonii
Thismia pallida

Thismia sp. Andulau

Thismia inconspicua 1

22 Thismia inconspicua 2 C I ad e 5
Thismia alba

Thismia filiformis

Thismia aseroe

100 100 | Thismia annamensis 1
Thismia annamensis 2

* 59 ﬂ{:Thismia cornuta
Thismia neptunis
——————— Thismia javanica
88 Thismia okhaensis
Thismia puberula
Thismia nigricans
Thismia mirabilis
85l Thismia mucronata 2 Clad e 4
Thismia mucronata 1
Thismia angustimitra

97

40

99

12

Thismia tentaculata
Thismia gardneriana
Thismia hongkongensis

— Thismia brunneomitra ™|
4o 4Thismia nigra
100 Thismia aff. nigra
o — Thismia laevis
Thismia acuminata
66| 97 100 |: Thismia betung-kerihunensis Clad e 3
Thismia clavigera
65 100 [ Thismia kelabitiana 1
Thismia kelabitiana 2 _
100 Thismia viridistriata 1
Thismia viridistriata 2

Thismia minutissima
* 40; Thismia rodwayi 5 7]
: 31 Thismia rodwayi 2

48\ Thismia rodwayi 1

Ny .
Old World 4[| Thismia rodwayi 3
Thismia rodwayi 4

Thismia Clade Thismia clavarioides Clade 2
\ Thismia sp.
100 100y Thismia hillii 2
76 ' Thismia hillii 3
Thismia hillii 1
Thismia megalongensis _|
41 Thismia gongshanensis
Thismia thaithongiana

Thismia abei

Thismia taiwanensis C I a d e 1
Thismia huangii
Thismia nigricoronata

100

100

Thismia panamensis
Tiputinia foetida

Haplothismia exannulata
62 Oxygyne shinzatoi
Tacca palmatifida

Burmannia latialata

100 Afrothismia hydra
100 [Afrothismia winkleri

100 \—Afrothismia foertheriana

62 L )

Afrothismia korupensis
100 L .
‘ Afrothismia amietii

Afrothismia kupensis
Dioscorea bulbifera
0.0 0.06 012 0.18 0.24 03

Figure 3. ML tree obtained from the analysis of the combined ITS+18S+atpI dataset. Numbers near branches are bootstrap
percentage in the maximum likelihood analysis (BP,;, ); asterisks in front of these numbers indicate the clades that are not
supported by Bayesian analysis (Fig. 2).
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Figure 4. Maximum likelihood ancestral state reconstruction in MESQUITE. A, Character 1: Underground part. B, Character
3: Transverse bars inside the hypanthium. Images: Thismia mucronata (left) and T. annamensis (right). Character state
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to this section, because T. clandestina is probably a
member of clade 3.

GEOGRAPHICAL DISTRIBUTION OF SPECIES

The five clades of Old World Thismia revealed in our
study have distribution ranges that are consistent with
biogeographic regions; in other words, the distribution
of their species differs considerably from the even
distribution, and the ranges occupied by the clades are
much smaller than the range of the whole genus. This
suggests the presence of a phylogenetic signal in the
species distribution ranges. Conversely, the ranges of
the clades overlap considerably. Some biogeographic
regions are inhabited by representatives of a single
clade, such as the islands of East Asia (i.e. Japan
and Taiwan; clade 1) and south-eastern Australia
and New Zealand (clade 2). In Borneo, the centre of
the known Thismia species diversity, only two clades
are found (clades 3 and 5). In contrast, species of four
clades occur in mainland South-East Asia (clades
1, 4, 5 and T. clavigera of clade 3), although this
region is generally poor for Thismia spp. apart from
the Malay Peninsula (Chantanaorrapint & Sridith,
2007, 2015; Chantanaorrapint & Chantanaorrapint,
2009; Chantanaorrapint, Tetsana & Sridith, 2015;
Chantanaorrapint et al., 2016; Chantanaorrapint,
2018; Siti-Munirah, 2018; Siti-Munirah & Dome,
2019), which is known to be floristically close to
Borneo. The geographical distribution of the five clades
will probably expand as more species are included
in future analyses; nevertheless, the geographical
data do not contradict the groups revealed from
molecular phylogenetic reconstructions and represent
a significant and useful addition to characterization
of the clades. We argue that a biogeographic
reconstruction of Old World Thismia in the light of
the phylogenetic data would significantly improve our
knowledge of evolution of this group. Such an analysis
will require broader species sampling, including the
most recently described species, and databasing of all
known records of the species under study.

EVOLUTION OF MORPHOLOGICAL CHARACTERS

Our results confirm extensive morphological
homoplasy in the Old World Thismia clade (Merckx
& Smets, 2014), a conclusion closely related to the
non-monophyly of the traditional infrageneric taxa
evaluated on the basis of morphological features.
Most of the state changes in this clade consist of
accumulation of floral features that make the flower
structure more complicated, and these probably act as

adaptations for pollination. These are as follows: origin
of floral zygomorphy (three times; see also Supporting
Information, Supplementary Fig. 11); origin of
transverse bars inside the hypanthium (uncertain
but multiple times; Fig. 4B); origin of the mitre
through postgenital tepal fusion or of a loose dome
through tepal overlapping (about six transformations
altogether, but there is also a reversal to free inner
tepals in a large group containing clade 5; Fig. 5A); and
the origin of appendages of outer tepals (most probably
four times; Fig. 6B). The loss of structures is much less
frequent and occurs for the appendages of the inner
tepals (most probably four times; Fig. 6A). In addition,
the apparent complete loss of the outer tepals occurred
in a subclade of clade 3.

The stamen tube probably originated at the origin of
the Old World Thismia clade and later disappeared in
two species of clade 1 (see also Supporting Information,
Supplementary Fig. 14). However, it should be noted that
ancestral state reconstruction of this character appears
to be highly sensitive to the species sampling in clade
1. For example, if two additional species of this clade
with free stamens are included in the analysis, a more
plausible hypothesis would be that on the independent
origin of the stamen tube in the clade sister to clade 1
and in the corresponding species of clade 1 (without any
reversal events). The interstaminal glands appeared
after the first divergence event in the Old World clade,
i.e. in the clade sister to clade 1 (Fig. 7TA). This character
seems to be morphologically dependent on the stamens
fusing into a tube, as long as the glands are arranged at
the sutures of connective fusion. However, similar glands
(commonly described as globoid lobes; Woodward et al.,
2007; Merckx et al., 2013) are also found in Tiputinia
foetida P.E.Berry & C.L.Woodw., which is coded here as
having free stamen connectives. Conversely, the presence
of the glands may indirectly indicate the actual presence
of a short basal filament tube in Tiputinia, which is
consistent with available illustrations, but cannot be
proven without morphological examination of this plant.
In our reconstruction, the evolution of the interstaminal
glands is homologous (non-homoplastic) in the Old
World Thismia clade, but interstaminal glands are also
found in Tiputinia. It should be noted that the glands are
sometimes hardly discernible and are often overlooked
when a careful examination is not conducted; in the
current study, we had to re-evaluate this character for
several species against their original descriptions. The
wing-like appendage of a connective appeared once in a
large clade in the Old World clade, simultaneously with
interstaminal glands (Fig. 7B). This character represents
a rare case of fully non-homoplastic morphological

probabilities are mapped on the resulting Bayesian trees. Lined circles, unknown or non-applicable. Light grey circles in

nodes, computation of proportional likelihoods impossible.
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Figure 5. Maximum likelihood ancestral state reconstruction in MESQUITE. A, Character 4: Structure of inner perianth
whorl. Images (from left to right): Thismia hexagona, T. puberula, T. hongkongensis. B, Character 5: Foveae on mitre surface.
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evolution in Thismiaceae, at least in the samples of
species used here. With respect to the characters of the
androecium, clade 1 shows considerable morphological
similarity with the other studied Dioscoreales, which
can be seen as one more piece of evidence for the gradual
accumulation of floral complexity in the Old World
Thismia clade.

The distribution of two floral characters (the presence
of appendages of inner tepals and the presence of
hypanthium bars, along with several additional ones)
is consistent with the recognition of two subclades in
clade 3. One of these subclades, consisting of T betung-
kerihunensis and T. clavigera, is characterized by the
presence of both structures and is already treated
as Thismia section Geomitra. The other subclade
comprising T. acuminata, T. brunneomitra, T. laevis
and T nigra lacks these structures, and it seems to
be consistent with Thismia section Sarcosiphon sensu
Jonker (1938), but this disagrees with the expanded
limits of this section proposed by Kumar et al. (2017).
Thismia betung-kerihunensis and T. clavigera also
share some additional features (not studied here),
such as the presence of a prominent longitudinal inner
rib on the stamen connective.

Our reconstruction of the evolution of the inner
perianth whorl allows speculations on the origin of the
peculiar structural type treated here as ‘tepals overlap
forming a loose dome’. From a morphological point of
view, the loose dome is closer to free inner tepals, as
long as there is no fusion between the tepals. Molecular
data suggest that the loose dome has evolved at least
twice in the course of the evolution of Thismia. One
of these cases is T. hongkongensis: according to its
current placement in our phylogenetic reconstruction,
its loose dome originated from free inner tepals, but its
phylogenetic position is rather poorly supported. All
other species with a loose dome belong to clade 1. It is
possible that this feature represents a synapomorphy
of clade 1, although the precise reconstruction of its
evolution is highly dependent on rather arbitrary
decisions regarding character coding. In particular, the
flowers with a mitre show considerable morphological
heterogeneity, some of them approaching the case of
loose dome. In most of the species with a mitre, the
aestivation of the inner tepals is valvate, similar to
that in species with free inner tepals (M.S. Nuraliev,
personal observations). However, in some species,
including T. nigricoronata (Kumar et al., 2017)
and probably all four species of clade 2 (Mueller,
1890a, b; Hunt et al., 2014, V.S.F.T. Merckx, personal
observations), the aestivation of the inner tepals is

imbricate or contort, i.e. the tepals overlap each other
and their margins are clearly discernible within the
mitre. At least in some of these species, the tepals
can be easily separated (Jonker, 1938). The same
pattern of aestivation of the inner perianth whorl is
characteristic of species with a loose dome (Akasawa,
1950; Yang, Saunders & Hsu, 2002; Li & Bi, 2013; Mar
& Saunders, 2015). The example of T. nigricoronata
is particularly instructive for illustration of the mitre
diversity, as the mitre of this species possesses a central
orifice (Kumar et al., 2017), a feature that probably
cannot appear in a mitre of valvate tepals and so far
is unknown in any other Thismia spp. We believe that
the structural diversity of the inner perianth whorl in
this genus merits further investigations. In subsequent
studies, it may appear beneficial to study its evolution
by means of the ancestral state reconstruction with
consideration of additional characters, including the
tepal aestivation.

Notwithstanding the minor uncertainties, our
reconstruction at the origin of the Old World clade
shows that the loose dome could have originated either
from the free inner tepals or from the mitre. In other
words, these three conditions seem to be equally close
to each other phylogenetically, despite the loose dome
resembling free tepals in its structure and mitre in
its appearance. The possibility of various transitions
between these conditions should be taken into account
when judging species relationships (and taxonomic
placement) on the basis of morphology.

The uncertain positions of T. gardneriana, T. javanica
and T. tentaculata in our molecular phylogenetic
reconstructions should be discussed in light of their
unusual flower structure. Generally, their flowers are
morphologically similar to those of clade 5 (to which
they all are closely related according to the Bayesian
tree), with the main difference being the absence of
appendages on their outer tepals. These species are
thus unique within our sampling in having free inner
tepals (which always coincides with the presence of
appendages of inner tepals) and outer tepals without
appendages. This kind of perianth morphology falls
under the state ‘free perianth lobes strongly different
in shape and size’ in the coding system of Merckx &
Smets (2014); however, under this state, they appear to
be mixed with some species possessing inner and outer
tepal appendages, such as T neptunis (which belongs to
clade 5 in our study). On the basis of the same character,
all species possessing free inner tepals and lacking
appendages of outer tepals plus T. hongkongensis
and T. neptunis were treated under Thismia section

Images: Thismia mucronata (left) and T. mirabilis (right). Character state probabilities are mapped on the resulting
Bayesian trees. Lined circles: unknown or non-applicable. Light grey circles in nodes: computation of proportional likelihoods

impossible.
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Figure 6. Maximum likelihood ancestral state reconstruction in MESQUITE. A, Character 6: Appendages of inner tepals.
Images: Thismia puberula (left), T. tentaculata (right). B, Character 8: Appendages of outer tepals. Images: Thismia
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Thismia subsect. Brunonithismia (Kumar et al., 2017).
As shown in our study, this subsection is polyphyletic
and is also significantly heterogeneous with respect to
perianth morphology.

PHYLOGENETIC ANALYSIS IN MYCOHETEROTROPHIC
SPECIES AND THE ISSUE OF CONTAMINATION

Many mycoheterotrophic plants are small slender plants,
from which it is difficult to obtain enough material
for DNA extraction (especially if the specimen is also
intended for morphological description). Additionally,
their mycoheterotrophic lifestyle could often lead to
contamination of DNA samples with fungal DNA. The
contamination by other plants was alsoreported (Lametal.,
2016). All of these factors sometimes hamper phylogenetic
analysis with the first-generation sequencing approach
(i.e. based on sequencing of amplified marker regions).
New methods of DNA sequencing (high-throughput
sequencing approaches; HT'S) that have emerged during
the last ten years are much less demanding regarding
DNA quality than PCR-based sequencing. Additionally,
they allow for the identification of marker sequences in
complex mixes without their physical separation (e.g. by
cloning). Using HTS, we obtained marker sequences from
four samples (the type of T. annamensis, T. hexagona,
T okhaensis and T. tentaculata) that were unattainable
with Sanger sequencing. In the case of T. hexagona,
the sequences of two plant species were obtained, one
of which is Thismia itself, and the second, according
to the ITS sequence, is Epirixanthes elongata Blume.
Some authors (see e.g. Sochor et al., 2018b) noted that
Epirixanthes Blume often co-occurs with Thismia spp.
Epirixanthes is a genus of mycoheterotrophic plants
from the distant eudicot family Polygalaceae (Danc¢ak
et al.,2017), and it is unlikely that it could be mixed with
Thismia during collection. We suggest that the source of
this contamination is pollen from plants of E. elongata
growing nearby. Indeed, plant pollen is ubiquitous, and
precautions against such contamination are rarely taken
during collection. Thus, pollen contamination may be
quite frequent when working with plant material collected
from natural habitats. Alternatively, contamination due
to cross-handling by the collector who sampled both
Thismia and Epirixanthes may occur. The sample of
T. okhaensis also included DNA of another plant that
cannot be reliably identified but presumably belongs to
Balanophoraceae (the 18S sequence has 97% similarity
with Corynaea crassa Hook.f.), as well as human DNA
(suggesting that a collector can be a vector for DNA). This
case illustrates the utility of HTS for making available
sequences from ‘hopeless’ samples, such as old herbarium

(or fixed) samples with highly degraded DNA or those
contaminated with fungi and/or other plants; however, it
also emphasizes the need of precautions to be taken to
avoid the inclusion of contaminating sequences in the
analysis.

CONCLUSIONS AND PROSPECTS

Thismia, as currently circumscribed, is polyphyletic and
its Neotropical species probably represent a distinct
group, separate from the Old World species. Thus, a
potential taxonomic solution for the polyphyly of Thismia
would be separation of the Neotropical species into a
segregated genus, whereas Thismia s.s. could be limited
to the Old World species, probably with the extinct North
American T. americana (Merckx & Smets, 2014).

Among Old World Thismia spp., we infer five
monophyletic groups (clades) that each deserve
infrageneric taxonomic status. These groups inhabit
well-delineated geographical and floristic regions,
specifically mainland South-East Asia (clades 1, 4, 5 and
T. clavigera of clade 3), the islands of East Asia (clade
1), Borneo (clades 3, 5) and south-eastern Australia and
New Zealand (clade 2). The evolution of morphological
characters was substantially homoplastic in Old
World Thismia, but our study provides each of the five
groups with a unique morphological description. We
propose the following characters as most informative
in distinguishing the groups, and sufficient to identify
them when used in combination: the structure of the
underground organs; the structure of the inner perianth
whorl; the presence of appendages of the inner tepals;
the presence of stamen appendages and the presence
of hypanthium bars. In addition, the state distribution
of the presence of appendages of the inner tepals and
the presence of hypanthium bars (along with several
additional characters not addressed here) corroborates
the recognition of two subclades in clade 3. Several
Thismia spp. could not be assigned with certainty to
any of the five clades and require further investigation.
The sampling of more species and/or the use of higher-
resolution data could help to clarify their phylogenetic
affinity and their taxonomic placement in the future.
In particular, we consider the inclusion of species with
unique morphology (such as T. appendiculata Schltr.,
T. labiata J.J.Sm. and T. sahyadrica Sujanapal, Robi &
Dantas) and samples from regions not yet covered (e.g.
South America, north-eastern Australia) to be of the
highest priority.

Our study, together with earlier papers, clearly
indicates that the current taxonomic system of Thismia

tentaculata (left) and T. abei (right). Character state probabilities are mapped on the resulting Bayesian trees. Lined circles:
unknown or non-applicable. Light grey circles in nodes: computation of proportional likelihoods impossible.
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Figure 7. Maximum likelihood ancestral state reconstruction in MESQUITE. A, Character 11: Interstaminal glands. Images:
Thismia thaithongiana (left), T. nigricans (right). B, Character 12: Wing-like appendage of a connective. Images: Thismia
thaithongiana (left), T. nigricans (right). Character state probabilities are mapped on the resulting Bayesian trees.
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needs considerable improvement. Notably, the molecular
phylogenetic reconstruction appears to be in good
agreement with the geographical distribution of species,
and at least in some lineages in a better agreement with
it than the traditional taxonomic classifications. The
phylogenetic signal of geographical patterns was therefore
underestimated in the past (e.g. Kumar et al., 2017). Our
work provides a basis for such a taxonomic revision and
indicates the directions of necessary modifications.

Finally, we propose that the morphological characters
studied in this paper, which allow morphological
delimitation of monophyletic groups, should receive
sufficient attention in the course of further works on
the taxonomy of this group. In particular, we suggest
that the precise morphological nature of corresponding
parts of plants should be evaluated, and uniform
terminology should be employed for their description.
Such an approach will allow unequivocal coding of the
characters for various analyses, as well as more accurate
morphological comparison and taxonomic placement of
newly described and already existing taxa.
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APPENDIX 2. Data matrix used in ancestral state reconstruction of Thismia and related taxa. Characters and states
shown in Appendix 3. ? is unknown,; - is not applicable (following Brazeau, 2011).

Taxon/character 1 2 3 4 5 6 7 8

©
—
(=)
[
=
—_
[\]

1
[u—y

Thismia abei

o

Thismia acuminata
Thismia alba
Thismia angustimitra
Thismia annamensis

—

Thismia aseroe

'
O HHO M

Thismia betung-kerthunensis

o o !

Thismia brunneomitra
Thismia bryndonii
Thismia clavarioides
Thismia clavigera
Thismia cornuta
Thismia filiformis
Thismia gardneriana
Thismia gongshanensis
Thismia hexagona
Thismia hillii

Thismia hongkongensis
Thismia huangii

o o !

=

(=]

Thismia inconspicua
Thismia javanica

.
OCOHOOOHHOREROHR R !

Thismia kelabitiana
Thismia laevis
Thismia megalongensis
Thismia minutissima
Thismia mirabilis

SO H OO OO !

Thismia mucronata
Thismia neptunis
Thismia nigra
Thismia nigricans
Thismia nigricoronata
Thismia okhaensis
Thismia pallida
Thismia panamensis
Thismia puberula
Thismia rodwayi
Thismia taiwanensis

'
H O OO = !

NNl

S = !

Thismia tentaculata

'
H OMHOOOHKROOO!

Thismia thaithongiana

o o !

Thismia viridistriata

Afrothismia amietii
Afrothismia foertheriana
Afrothismia hydra
Afrothismia korupensis
Afrothismia kupensis
Afrothismia winkleri
Burmannia latialata
Dioscorea bulbifera
Haplothismia exannulata
Oxygyne shinzatoi

Tacca palmatifida
Tiputinia foetida

VO OO OO0 OO0 OO OO0 OO0 OHOOOVOHFHMHFMEHFOFHFHOHEHOMEOOMEOMOMMPMEOMROO

o o !

SO O OO OO HMHMEMEMFEFMEFOOODODOOHOODODOODODODODODODOODOHOODOOODOOHOOODODODOOOO O

O ONOWERRARAMBRBRRHOOOOONOOOOHOOOOOHHOOOOOOOOOOHROOHRHOOOO RO
O OO OO OO OO O0OO0OOHHMHONKEHFHOOKRKMHIMIEMOMPMEMERMRMKPMEOOFHFNHONOOOHMEKFOKHEMEOOHOKKIDN
OO H OO O HOMIMIIMOKMMIMIMEHIMOMMOMROOHOOMKMOOMKMOMIKMIMI MMM/ [ |[H [H O H H H O H O
|
Rl =l e e e T e T e T e O e G e e e S e e el e e e e e T s T e T o T o T o S G e G e G i G G = T S = Sy =
C OO OO O OO OO OO MM HHH O KM M HEH RO O
H O O OO OO0 OOOHOHOKREMHOKREMOMRHMEREMEEMER R HRHEHEIBKMHEBEOWKEMHORKIKMIMHIE/HEMEIEB/MHBRH$H H - O
OO0 00000 OOOOHOHOMHMOMEMORKIEMEHEIER M HIB [HHB H O HEH O HEF MM H RO

'
QO HOOOHOMKMKMEO!

—
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APPENDIX 3. Characters and character states used in ancestral state reconstruction.

Characters (and states) were as follows:

1.

IS RN U N

8.
9.
10.
11.
12.

Underground part: creeping vermiform roots (0); coralliform roots (1); tuberous roots (2); filiform roots (3); short
rhizome bearing clumps of small root tubercles (4); vertical cylindric sympodially branched rhizome (5); tuber (6).

. Flower symmetry: actinomorphy (0); zygomorphy (1).
. Transverse bars inside the hypanthium: absent (0); present (1).

Structure of inner perianth whorl: tepals free (0); tepals fused into mitre (1); tepals overlap forming a loose dome (2).

. Foveae on mitre surface: absent (0); present (1). Species without a mitre are coded ‘-.
. Appendages of inner tepals: absent or < 1.5 mm long (0); present, > 1.5 mm long (1).
. Mitre appendages arising from a central point: free from each other (0); fused into a column (1). Species without

such appendages are coded ‘-.

Appendages of outer tepals: absent (0); present (1). Species without outer tepals are coded ‘-
Stamen number: 3, opposite inner tepals (0); 6 (1).

Stamen connectives: free (0); postgenitally fused into a stamen tube (1).

Interstaminal glands: absent (0); present (1).

Wing-like appendage of a connective: absent (0); present (1).

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher's web-site:

Supplementary File S1. Mesquite Nexus file with morphological matrix and maximum likelihood ancestral
state reconstruction.

Supplementary File S2. Supporting table and figures: table with BLAST results and accession numbers of
sequences resulting from contamination. MrBayes and RAxML trees built from alignments of ITS, 18S, aip1,
18S+atpl and 18S+ITS matrices. Maximum likelihood ancestral state reconstructions in Mesquite: Flower
symmetry; Mitre appendages arising from a central point; Stamen number; Stamen connectives.
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