Species tree estimation from phylogenomic datasets

Tomáš Fér
Phylogenomics

• using whole-genome sequences or large portion of the genome to build a phylogeny
 • whole chloroplast sequences
 • hundreds or thousands of genes

• gene tree – individual evolutionary history
• species tree – ‘true’ species evolution
• gene tree/species tree
Different phylogenomic approaches

<table>
<thead>
<tr>
<th>Method</th>
<th>Broad taxonomic application</th>
<th>Efficient with non-model species</th>
<th>Usable across Tree of Life</th>
<th>Minimal missing data</th>
<th>Utilizes DNA</th>
<th>Accommodates degraded samples</th>
<th>Short development time</th>
<th>Short data collection time</th>
<th>Short data assembly time</th>
<th>Robust to substitutions</th>
<th>Cost effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid enrichment</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td></td>
</tr>
<tr>
<td>Whole genome</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td></td>
</tr>
<tr>
<td>Transcriptome</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td></td>
</tr>
<tr>
<td>RRL and RAD</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td></td>
</tr>
<tr>
<td>Multiplex PCR</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td></td>
</tr>
<tr>
<td>Targeted amplicon</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td></td>
</tr>
<tr>
<td>Massively uniplex PCR</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td>🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦 🟦</td>
<td></td>
</tr>
</tbody>
</table>

Hyb-Seq overview

probe design

bait design and synthesis (MYcroarray MYbaits)

DNA extraction

sonication

library preparation

solution hybridization

sequencing

data analysis

Gnirke et al. 2009

Illumina MiSeq 2x150 PE
Read processing

Consensus sequences → Alignments → Gene trees → Species tree
Species tree estimation

• **concatenation** – good unless strong ILS
 • single partition model (e.g., MP)
 • multiple partitions model (ML or Bayesian)
• **consensual methods** using MP – minimizes deep coalescences (MDC)
• multispecies coalescence (all incongruences due to differences in coalescence processes, no hybridization)
 • **coestimation** of gene trees and species tree – *BEAST – Bayesian analysis
• **summary methods**
 • supertree methods – MRL (maximum representation with likelihood)
 • MP-EST – maximum pseudo-likelihood for estimating species tree
 • ASTRAL, ASTRID, STAR, STEAC – very fast and accurate
• Bayesian concordance analysis (BUCKy) – quartet-based Bayesian species tree estimation – uses concordance factor to build dominant history
Summary methods
Species tree estimation

• supertree
 • MRP – maximum representation using parsimony
 • MRL – maximum representation using likelihood

• MP-EST – maximum pseudo-likelihood approach for estimating species trees

• STEAC – species tree estimation using average coalescence times

• STAR – species tree estimation using average ranks of coalescences

• ASTRAL — Accurate Species Tree Reconstruction ALgorithm

• ASTRID — Accurate Species TRee from Internode Distances (reimplementation of NJst method)
Methods comparison

Results on 11-taxon datasets with weak ILS

Results on 11-taxon datasets with strong ILS

*BEAST more accurate than summary methods (MP-EST, BUCKy, etc)
CA-ML: concatenated analysis) most accurate

Datasets from Chung and Ané, 2011
Bayzid & Warnow, Bioinformatics 2013

T. Warnow, The University of Texas
Species tree estimation

- wrong species tree if poor gene trees
 - shorter alignments usually give poorly supported trees
- improve gene trees
 - collapse unsupported branches
 - **binning** – assign gene to bins
 - create supergene alignments
 - naïve binning – random
 - statistical binning
 - no incompatibility among gene trees in the same set

11-taxon strong ILS with 50 genes
ASTRAL
Accurate Species Tree Reconstruction ALgorithm

• unrooted gene trees
• species tree that agrees with the largest number of quartet trees induced by the set of gene trees
• weighting all three alternative quartet topologies according to their relative frequencies within gene trees
 • much more frequent topology – trees without this topology are penalized
 • similar frequencies (i.e., close to 0.33) – the quartet has little impact to optimization
• final species tree with
 • local posterior probability that the branch is in the species tree
 • the length of internal branches in coalescent units
MRL
Maximum Representation with Likelihood

- supertree methods – estimates species tree on full taxon sets from sets of smaller trees (i.e., with missing species)
- encodes a set of gene trees by a large randomized matrix
- each edge (branch) in each gene tree
 - ‘0’ for the taxa that are on one side of the edge
 - ‘1’ for the taxa on the other side
 - ‘?’ for all the remaining taxa (i.e., the ones that do not appear in the tree)
- MRL matrix is analyzed using heuristics for a symmetric 2-state Maximum Likelihood
 - in RAxML as ‘BINCAT’ model
‘Good genes’

genes with good properties (no paralogs, low conflicting signal...)

alignments
• length – longer better
• missing data – fewer better
• parsimony informative sites – more better
• information content

trees
• average bootstrap support – higher better
• average branch length – higher means faster gene
• saturation – correlation between p-distances and tree distance