More species than expected?

Ecological differentiation of cryptic species within an asexual protist morphospecies

Pavel Škaloud¹ & Fabio Rindi²

¹ Charles University in Prague, Department of Botany, Prague, Czech Republic
² Martin Ryan Institute, National University of Ireland, Galway, Ireland
Is everything everywhere?

Global Dispersal of Free-Living Microbial Eukaryote Species
Bland J. Finlay

Finlay & Clarke (1999); Finlay (2002)
- genetic variation in molecular markers reflects rather the accumulation of neutral mutations over historical time than the existence of morphologically indiscernible, cryptic species.
- the phenotype as the only proper feature to define real species of protists

Cyclidium glaucoma
Aims of the study

• Does the genetic diversity within protist morphospecies reflect an accumulation of neutral mutations?

Klebsormidium flaccidum – cosmopolitan, broadly distributed, asexual

• Mapping the morphological properties on the phylogeny of *K. flaccidum*

- 62 strains isolated from a variety of aero-terrestrial and aquatic habitats
- Genetic data: ITS rDNA & rbcL sequences
- Morphological data: width, growth habit, presence of a superficial layer of filaments, shape of release apertures in sporangia, zoospore germination, cell wall remnants
Bayesian phylogeny (ITS rDNA + rbcL)

- Two main clades resolved: A B
- 11 well-resolved lineages within *K. flaccidum* morphospecies
- Four morphologically different *Klebsormidium* species nested within *K. flaccidum*
Ancestral state reconstructions (MP)

Average cell width

- Partial usefulness of this character to characterize particular genetic lineages
- In some cases, genetically uniform strains considerably differ in their cell width
Ancestral state reconstructions (MP)

Ability to produce a superficial layer of hydro-repellent filaments

- Superficial layer completely absent in lineages A2, A9, and B4
Reproductive features (structure of release apertures and zoospore germination)

- distinct apertures
- indistinct apertures
- unipolar germination
- bipolar germination
Strong ecological preferences of the lineages to one of three habitat types:

- Natural substrates
- Artificial substrates
- Aquatic habitats
Ecological differentiation of cryptic species

- The genetic diversity within protist morphospecies really reflect the existence of cryptic species, which could be defined by their ecological preferences and slight morphological differences.
- The morphology alone is not sufficient to unambiguously discriminate among closely related protist species
- If the ecological differentiation of cryptic species is frequent in nature, the real species diversity of protists could be in fact much higher than estimated

Orbulina universa

Ecological significance of cryptic variation in Foraminifera: de Vargas et al. 1999, 2002
Speciation of asexual protists

• Diversification of asexual protists into the distinct, ecologically well defined cryptic species could be enabled by the process of ‘periodic selection’
Speciation of asexual protists – periodic selection

Single, genetically uniform species growing on natural substrates
Speciation of asexual protists – periodic selection

Mutations increase genetic diversity within the species
Speciation of asexual protists – periodic selection

Adaptive mutation could quickly spread and replace all organisms belonging to this species.
Speciation of asexual protists – periodic selection

The selection crashes the accumulated diversity back to near zero.
If a new mutant differs in its ecological niche, it could give rise to the new, ecologically defined species.
Speciation of asexual protists – periodic selection

Periodic selection will keep the species distinct, by purging the diversity only within and not between the ecologically differentiated species.
Conclusions

• Our findings clearly contradict the assumptions of Finlay (1999) and Fenchel and Finlay (2006) that the genetic variation in molecular markers only reflects the accumulation of neutral mutations.
• The phenotypic data should be combined with molecular background and ecological consequences.
• We consider that the permanent existence of genetically and ecologically well-defined cryptic species is enabled by the mechanism referred to as ‘periodic selection’
• To organize biological information in a meaningful fashion, any functional properties should be found to characterize the cryptic species.

Acknowledgements

• The study was supported by project No. 206/09/P291 of the Czech Science Foundation