POLYPHASIC EVALUATION OF XANTHIDIUM ANTILOPAEUM AND XANTHIDIUM CRISTATUM (ZYGNEMATO PHYCEAE, STREPTOPHYTA) SPECIES COMPLEX

Jan Stastny,² Pavel Skaloud
Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-12801, Czech Republic

Dorothee Langenbach
Botanisches Institut, Lehrstuhl I, Universität zu Köln, Zülipicherstr. 47b, Köln, D-50674, Germany

Katarina Nemjova and Jiri Neustupa
Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-12801, Czech Republic

We investigated twenty-six strains of Xanthidium antilopaeum Kütz. and seven strains of X. cristatum Ralfs isolated from various European localities or obtained from public culture collections. A combination of molecular, geometric morphometric, and morphological data were used to reveal the patterns of the phylogenetic and morphological differentiation of these taxonomically very complicated desmid taxa. The molecular data based on trnG [G] and ITS rDNA sequences illustrated the monophyly of both the complexes, which indicated that their traditional morphology-based discriminative criteria, such as the different number of spines, may generally continue to be considered relevant. The single exception was X. antilopaeum var. basiornatum B. Eichler et Raciborski, which was positioned outside the X. antilopaeum/var. cristatum clade. The independent status of this taxon was also confirmed on the basis of the geometric morphometric data, so that we concluded that it probably represents a separate species. Within X. cristatum complex, the traditional varieties X. cristatum var. cristatum Ralfs, X. cristatum var. uncinatum Ralfs, and X. cristatum var. scrobiculatum Scott et Grönblad turned out to be separate taxa. Conversely, X. cristatum var. bituberculatum Lowe lacked any taxonomical value. Our data on X. antilopaeum illustrated extensive phylogenetic as well as phenotypic variability within this species complex. However, our data did not result in any unambiguous pattern that would allow sound taxonomic classification. Finally, we also found out that the morphologically peculiar Staurastrum tumidum Ralfs belongs to the genus Xanthidium based on the combined rbcL + cox III data set. Consequently, this species was formally transferred to this genus.

Key index words: Desmidiales; geometric morphometrics; molecular phylogeny; taxonomy; Xanthidium

Desmids belong to the Zygnematophyceae, the largest and the most diverse group of streptophyte green algae (Gontcharov and Melkonian 2005). They are known for their high morphological variation that led to the description of over 4,000 species (Gontcharov et al. 2003, Gontcharov 2008). As inhabitants of freshwater wetlands, desmids belong to the most important phytobenthic groups in these habitats, in terms of both species richness and biomass (Coesel and Meesters 2007). Therefore, they have been frequently used in various kinds of ecological and biomonitoring studies (Coesel 2001, 2003, Pals et al. 2006, Krasznai et al. 2008, Neustupa et al. 2009, 2011a). Their suitability and reliability for these purposes essentially requires reliable species concepts. However, the traditional desmid taxonomy, based entirely on morphological features, has recently been challenged by molecular data. Molecular research has increasingly, and sometimes controversially, been turning desmid taxonomy upside down, especially at the generic level (McCourt et al. 2000, Gontcharov et al. 2003, Gontcharov and Melkonian 2005, 2008, 2010, 2011, Gontcharov 2008, Hall et al. 2008, Skaloud et al. 2011). Most of the traditional species-rich genera were found to be polyphyletic or paraphyletic (Gontcharov and Melkonian 2005, 2008, Gontcharov 2008). However, while we now know that most of the traditional generic concepts have been inadequate, little information is available on the validity of traditional desmidiae species concepts. In many desmids, the extensive morphological variation within the range of traditionally defined species led to the descriptions of numerous infraspecific taxa, whose taxonomic validity remained largely unresolved (Kouwets 2008). Several studies based on crossbreeding experiments (Blackburn and Tyler 1987, Denboh et al. 2003) indicated that concepts of at least some desmid species have been too broad, implicating some degree of pseudocryptic or cryptic species diversity. This opinion has been further supported by several recent studies that used a combination of molecular, morphological, and
geometric morphometric methods that revealed surprising microevolutionary differentiation within several desmid species. The studies on *Micrasterias crux-melitensis/M. radians* (Neustupa et al. 2010) and *M. truncata* complexes (Nemjová et al. 2011) illustrated pseudocryptic diversity within these traditional desmid taxa. Several morphologically defined infraspecific taxa were shown to be artificial and probably lacking any taxonomic value, but some of the other varieties apparently represented independent species. Another study that focused on the *M. rotata/M. fimbriata* species complex (Neustupa et al. 2011b) revealed phylogenetic homogeneity of traditional *M. rotata* but it also illustrated that European populations of *M. fimbriata* actually belong to two species lineages. It has to be noted that in the above-mentioned studies, individual species-level phylogenetic lineages were always found to be morphologically perfectly identifiable, both by careful microscopic analysis, as well as by geometric morphometrics. However, these studies comprised only the representatives of the morphologically most conspicuous genus *Micrasterias*, while there are still no phylogenetic data on the validity of traditional species concepts in other desmidiacean genera, often disposing much less morphological discriminative characters than the above-mentioned genus.

The genus *Xanthidium* Ralfs is a widely distributed, well-known desmid genus with more than 110 morphologically delimited species (Gontcharov and Melkonian 2011). It was characterized by biradiate cells with multiformal semicells, provided with a series of spines usually confined to the semicell angles (Coesel and Meesters 2007). The type species of the genus *Xanthidium* has not yet been designated (Guiry and Guiry 2012). The genus as a whole was found to be polyphyletic on the basis of molecular phylogenetic analysis (Gontcharov and Melkonian 2011). However, several of the traditional “core” *Xanthidium* species, such as *Xanthidium antilopaeum*, *X. cristatum*, *X. subbestafieri*, and *X. brebissonii*, were recovered in a single well-supported phylogenetic lineage within Desmidiaceae (Gontcharov and Melkonian 2011). Conversely, *X. octocorne* Ralfs was found to be part of a strongly supported *Staurodesmus* lineage (Gontcharov and Melkonian 2011). Conversely, Gontcharov et al. (2003) and Gontcharov and Melkonian (2011) illustrated a possible sister relationship of *Staurostrum tumidum* Ralfs to the “core” *Xanthidium* lineage.

In the present study, we evaluated the phylogenetic and morphological patterns in the well-known traditional species *X. antilopaeum* Kütz. and *X. cristatum* Ralfs. These species belong to one of the most frequently occurring representatives of the genus, and *X. antilopaeum* has even been considered to be one of the most frequently occurring desmids in the temperate European peatlands (Lenzenweger 1997). According to the traditional morphological criteria, *X. cristatum* can be distinguished from *X. antilopaeum* by the different number of cellular spines, possessing a total of 10 instead of eight spines per semicell that are typically present in *X. antilopaeum* (West and West 1912). Both taxa, however, exhibit notable morphological variation that led to the taxonomic description of numerous infraspecific taxa, differing in the arrangement of the marginal spines and the central pattern of scrobiculae (Coesel and Meesters 2007). In total, 93 infraspecific taxa have been described in *X. antilopaeum* and 42 in *X. cristatum* (Guiry and Guiry 2012). Many of these traditional subspecific taxa may have no phylogenetic value, and *X. antilopaeum* and *X. cristatum* have therefore been considered to belong to the taxonomically most problematic desmids (Prescott et al. 1982). Coesel (2005) suggested that some of the *X. antilopaeum* varieties are so different from the nominate variety that they might be considered species of their own. Therefore, we focused on infraspecific variation within these two morphologically very diverse species. In total, we examined 26 strains of *X. antilopaeum* and 7 strains of *X. cristatum*. The strains were isolated from natural samples obtained from across Europe, or they had been obtained from public culture collections. Morphology of the strains was ascertained, and, if possible, they were identified to the variety level. In addition, morphological diversity of strains was assessed by geometric morphometrics and by performing scanning electron microscopy (SEM). Geometric morphometrics is a quantitative method for the evaluation of biological shapes that has recently been used for the morphological variation analyses in various groups of microalgae (e.g., Beszteri et al. 2005, Potapova and Hamilton 2007, Veselá et al. 2009), including desmids (Neustupa and Staštný 2006, Neustupa et al. 2010, 2011b, Nemjová et al. 2011). SEM has also been considered to be a key additional tool for the examination of the richly sculptured cell wall of desmids (Coesel 1984, Gontcharov et al. 2002). The gene sequence data of four molecular markers (ITS rDNA, *coxIII*, *rbcL*, and *trnG*

In summary, we primarily asked whether *X. antilopaeum* and *X. cristatum* consist of phylogenetically homogenous entities, i.e., whether the traditional morphology-based discriminative characters (the different number of spines per semicell) may still be considered to be relevant. Moreover, we aimed to resolve the inner phylogenetical structure within both complexes, and we attempted to identify morphological peculiarities of the newly recognized species-level lineages. Finally, we intended to corroborate the unusual phylogenetic position of *S. tumidum* by sequencing our own isolate of this species.
Materials and Methods

Isolation and cultivation of strains and LM and SEM observations. For this study, we isolated 21 strains of *X. antilopaeum* and *X. cristatum* and 1 strain of *S. tumidum* from various European wetlands (Table 1). In addition, 12 strains of *X. antilopaeum* and *X. cristatum* were obtained from public culture collections such as Sammlung von Conjugat-Kulturen, University Hamburg (SVCK) and Culture Collection of Algae, University of Vienna (ASW), nowadays deposited in the Culture Collection of Algae at the University of Cologne (CCAC; Table 1). The clonal strains were isolated by single-cell
table

<table>
<thead>
<tr>
<th>Strain no.</th>
<th>Taxon name</th>
<th>Origin</th>
<th>Geographic coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 21</td>
<td>Xanthidium antilopaeum var. antilopaeum</td>
<td>Grand Étang de Biscarrosse, Aquitaine, France</td>
<td>44°23′13.60″N, 1°11′18.90″W</td>
</tr>
<tr>
<td>H 23</td>
<td>Xanthidium antilopaeum var. antilopaeum</td>
<td>Huiský pond, Czech Republic</td>
<td>48°39′20.99″N, 14°40′56.36″E</td>
</tr>
<tr>
<td>H 25</td>
<td>Xanthidium antilopaeum var. antilopaeum</td>
<td>Étang de Gazeaux, Aquitaine, France</td>
<td>44°30′39.20″N, 1′11′25.15″W</td>
</tr>
<tr>
<td>H 27</td>
<td>Xanthidium antilopaeum var. antilopaeum</td>
<td>Borkovická blata peat bog, Czech Republic</td>
<td>54°14′9.36″N, 14°37′24.84″E</td>
</tr>
<tr>
<td>H 29</td>
<td>Xanthidium antilopaeum var. antilopaeum</td>
<td>Pískový Cep I sandpits, Czech Republic</td>
<td>48°55′6.119″N, 14°53′3.058″E</td>
</tr>
<tr>
<td>H 31</td>
<td>Xanthidium antilopaeum var. antilopaeum</td>
<td>Pískový Cep I sandpits, Czech Republic</td>
<td>48°55′6.119″N, 14°53′3.058″E</td>
</tr>
<tr>
<td>H 32</td>
<td>Xanthidium antilopaeum var. antilopaeum</td>
<td>Bastemose, Bornholm, Denmark</td>
<td>55°07′37.63″N, 14°56′42.15″E</td>
</tr>
<tr>
<td>SVCK 28</td>
<td>Xanthidium antilopaeum var. antilopaeum</td>
<td>Fischteiche-Wolkersdorf near Frankenberg, Germany</td>
<td>—</td>
</tr>
<tr>
<td>SVCK 281</td>
<td>Xanthidium antilopaeum sensu lato</td>
<td>Burnham’s Swamp near Falmouth, USA</td>
<td>—</td>
</tr>
<tr>
<td>SVCK 343</td>
<td>Xanthidium antilopaeum sensu lato</td>
<td>Pitztal, Austria</td>
<td>—</td>
</tr>
<tr>
<td>SVCK 105</td>
<td>Xanthidium antilopaeum sensu lato</td>
<td>Foskumyr northeast from Dombas, Norway</td>
<td>—</td>
</tr>
<tr>
<td>ASW 07105</td>
<td>Xanthidium antilopaeum sensu lato</td>
<td>Reservoir for drinking water, Jakobshaven, Greenland</td>
<td>—</td>
</tr>
<tr>
<td>ASW 07106</td>
<td>Xanthidium antilopaeum sensu lato</td>
<td>Reservoir for drinking water, Jakobshaven, Greenland</td>
<td>—</td>
</tr>
<tr>
<td>ASW 07107</td>
<td>Xanthidium antilopaeum sensu lato</td>
<td>Pool in the tundra, St. Matthew Island, Bering Sea, USA</td>
<td>—</td>
</tr>
<tr>
<td>H 26</td>
<td>Xanthidium antilopaeum sensu lato</td>
<td>A peaty pool near Maumwee Lough, Ireland</td>
<td>53°28′27.30″N, 9°32′38.52″W</td>
</tr>
<tr>
<td>H 17</td>
<td>Xanthidium antilopaeum var. basiorum</td>
<td>Schwemm near Walchsee peat bog, Austria</td>
<td>47°39′34.52″N, 12°17′50.51″E</td>
</tr>
<tr>
<td>H 22</td>
<td>Xanthidium antilopaeum var. depauperatum</td>
<td>Eirk Lough, Kerry, Ireland</td>
<td>51°56′25.36″N, 9°37′37.85″W</td>
</tr>
<tr>
<td>H 20</td>
<td>Xanthidium antilopaeum var. laeve</td>
<td>A peaty pool near Maumwee Lough, Ireland</td>
<td>53°28′27.30″N, 9°32′38.52″W</td>
</tr>
<tr>
<td>SVCK 147</td>
<td>Xanthidium antilopaeum var. minneapolienne</td>
<td>A pool northeast from Raleigh, USA</td>
<td>—</td>
</tr>
<tr>
<td>H 30</td>
<td>Xanthidium antilopaeum var. polycalamus</td>
<td>An unnamed lake, Connemara, Ireland</td>
<td>53°34′10.60″N, 9°48′29.57″W</td>
</tr>
<tr>
<td>H 10</td>
<td>Xanthidium antilopaeum var. incrassatum</td>
<td>Bílehyne wetland, Czech Republic</td>
<td>50°34′59.72″N, 14°42′17.76″E</td>
</tr>
<tr>
<td>H 19</td>
<td>Xanthidium antilopaeum var. incrassatum</td>
<td>Schwemm near Walchsee peat bog, Austria</td>
<td>47°39′34.52″N, 12°17′50.51″E</td>
</tr>
<tr>
<td>H 15</td>
<td>Xanthidium antilopaeum var. planum</td>
<td>Marientech, Czech Republic</td>
<td>50°32′43.53″N, 14°40′39.44″E</td>
</tr>
<tr>
<td>H 18</td>
<td>Xanthidium antilopaeum var. planum</td>
<td>Schwemm near Walchsee peat bog, Austria</td>
<td>47°39′34.52″N, 12°17′50.51″E</td>
</tr>
<tr>
<td>H 28</td>
<td>Xanthidium antilopaeum var. planum</td>
<td>An unnamed lake near Upper Lake, Kerry, Ireland</td>
<td>51°57′57.66″N, 9°35′49.24″W</td>
</tr>
<tr>
<td>SVCK 74</td>
<td>Xanthidium antilopaeum var. planum</td>
<td>Peaty pool south from Koli, Finland</td>
<td>—</td>
</tr>
<tr>
<td>H 59</td>
<td>Xanthidium cristatum var. cristatum</td>
<td>Mariánský pond, Czech Republic</td>
<td>50°32′43.53″N, 14°40′39.44″E</td>
</tr>
<tr>
<td>ASW 07060</td>
<td>Xanthidium cristatum var. cristatum</td>
<td>An unnamed bog, Finland</td>
<td>—</td>
</tr>
<tr>
<td>ASW 07101</td>
<td>Xanthidium cristatum var. cristatum</td>
<td>A peat bog near Tamsweg, Salzburg, Austria</td>
<td>—</td>
</tr>
<tr>
<td>H 08</td>
<td>Xanthidium cristatum var. scrobiculatum</td>
<td>The Long Range, Kerry, Ireland</td>
<td>51°59′51.04″N, 9°33′3.81″W</td>
</tr>
<tr>
<td>H 11</td>
<td>Xanthidium cristatum var. scrobiculatum</td>
<td>An unnamed lake, Connemara, Ireland</td>
<td>53°34′10.60″N, 9°48′29.57″W</td>
</tr>
<tr>
<td>ASW 07102</td>
<td>Xanthidium cristatum var. scrobiculatum</td>
<td>Skarsvag, Norway</td>
<td>—</td>
</tr>
<tr>
<td>H 12</td>
<td>Xanthidium cristatum var. uncinatum</td>
<td>Bílehyne wetland, Czech Republic</td>
<td>50°35′4.27″N, 14°42′24.95″E</td>
</tr>
<tr>
<td>H 76</td>
<td>Staurastrum tumidum</td>
<td>Dvoriště peat bog, Czech Republic</td>
<td>49°4′14.09″N, 14°38′59.31″E</td>
</tr>
</tbody>
</table>
pipetting. To achieve relatively rapid growth of the strains, they were cultured in the MES-buffered DY IV liquid medium at 24°C and continuously illuminated with 5–15 μmol photons · m⁻² · s⁻¹ from 18 W cool fluorescent tubes (Philips TLD 18W/33, Royal Philips Electronics, Amsterdam, Netherlands). Microphotographs of the cells were obtained using an Olympus BX51 (Olympus, Tokyo, Japan) light microscope with an Olympus Z5060 digital camera. For SEM, the acetone-washed glass coverslips were heated, and coated three times with a poly-L-lysine solution (1:10 in deionized water) to ensure appropriate cell adhesion. A drop of the formaldehyde-fixed cell suspension was transferred into 30% acetone, and dehydrated by using an acetone series. Subsequently, the cells were dried to a critical point by using liquid CO₂. Finally, they were sputter coated with gold (Bal-Tec Sputter Coater SCD 050, Capovani Brothers Inc., Scona, NY, USA) and examined using a JEOI 6380 LV (JEOL Ltd., Tokyo, Japan) scanning electron microscope.

DNA isolation, amplification, and sequencing. After centrifugation of desmid cells in 2 mL tubes, 100–200 mL of the InstaGene matrix (Bio-Rad Laboratories, Hercules, CA, USA) was added to the pellet. Then, the cells were mechanically disrupted by shaking for 5 min with glass beads (3 mm in diameter; Sigma-Aldrich, St. Louis, MO, USA) in Mixer Mill MM 400 (RETSH GmbH, Haan, Germany). Subsequently, the solution was incubated at 56°C for 30 min, vortexed for 10 s, and heated at 99°C for 8 min. After another vortexing step, the tubes were centrifuged at 16,000 rcf for 2 min. Finally, the supernatant (DNA) was diluted to a concentration of 10 ng · L⁻¹ for use in polymerase chain reaction (PCR) amplification. Four molecular markers were amplified by PCR: chloroplast *rbcL* and *coxIII* sequences; and mitochondrial *coxII*, and nuclear ITS rDNA. The PCR reaction in total volume of 20 μL contained 13.1 μL of sterile Milli-Q water, 2 μL of AmpliTaq Gold® 360 Buffer 10 × (Applied Biosystems, Life technologies, Carlsbad, CA, USA), 2.2 μL of MgCl₂ (25 mM), 0.4 μL of dNTP mix (10 mM), 0.25 μL of each primer (25 nM), 0.6 μL of 300 GC enhancer, 0.2 μL of AmpliTaq Gold® 360 DNA Polymerase, and 1 μL of DNA (10 ng · L⁻¹). The PCR amplification was performed in either a Touchgene Gradient Thermal Cycler (Krackelster Scientific, Albany, NY, USA) or an XP thermal cycler (Bioer, Tokyo, Japan). Amplification primers and cycling conditions are listed in Table 2 and Table 3. The PCR products were stained using bromophenol blue loading dye, quantified on 1% agarose gel, stained with ethidium bromide, and cleaned with the JETQUICK PCR Purification Kit (Genomed, Löhne, Germany), according to the manufacturer’s protocol. The purified amplification products were sequenced using an Applied Biosystems (Seoul, Korea) automated sequencer (ABI 3730 x 1) at Macrogen Corp, in Seoul, Korea. The sequencing reads were assembled and edited using the SeqAssem programme (Hepperle 2004).

Sequence alignment. Three different alignments were constructed for the phylogenetic analyses: (i) a concatenated *rbcL* and *coxIII* alignment of 101 desmid sequences selected to encompass all the main phylogenetic lineages of the family, including *Xanthidium* sequences, determined in this study; (ii) a *coxIII* alignment of 32 newly determined *Xanthidium* sequences; and (iii) an ITS rDNA alignment comprising 27 new *Xanthidium* sequences. The list of all the sequences involved in phylogenetic analyses, including the GenBank accession numbers, is given in Table S1 in the Supporting Information. The final *rbcL* + *coxIII* alignment was generated as follows: First, we downloaded 45 core *rbcL* + *coxIII* sequences from the GenBank database that encompassed most of the Desmidiales lineages according to Hall et al. (2008). Then, we added 35 *rbcL* sequences selected according to the desmid phylogeny recently published by Gontcharov and Melkonian (2011) to cover the remaining Desmidiales lineages. Finally, 5 *rbcL* and 14 *coxII* sequences determined in this study together with six closely related sequences revealed by BLAST searches were added to the alignment and manually aligned in MEGA 4. The concatenated 1,870-bp matrix contained 101 taxa and was 88% filled for the *rbcL* data and 59% filled for the *coxIII* data. The *coxIII* and ITS rDNA sequences were manually aligned in MEGA 4 (Kumar et al. 2008). ITS sequences were aligned with the help of their rRNA secondary structure information, constructed using the mfold computer program, ver. 2.3 (Zuker 2003). All alignments are available in Table S1.

Model selection and phylogenetic analyses. A suitable partitioning strategy and partition-specific substitution models for the *rbcL* + *coxIII* data set were selected in a multi-step process (Verbruggen et al. 2010, Skaloud et al. 2012). The BIC-based model selection procedure selected the following partitioning strategy: (i) First and second codon position of *rbcL* (GTR + Γ); (ii) third codon position of *rbcL* (GTR + Γ); (iii) second codon position of *coxII* (HKY + Γ); and (iv) third codon position of *coxII* (GTR + Γ). The most appropriate substitution models for the *coxIII* and ITS rDNA data sets were estimated using the Akaike information criterion (AIC) with PAUP/MrModeltest 1.0b (Nylander 2004). The phylogenetic trees were inferred with Bayesian inference (BI) using MrBayes, version 3.1 (Ronquist and Huelsenbeck 2003). The calculation was performed on the 86 unique sequences. The analysis of the *coxIII* data set was performed on a partitioned data set using a covarion-like substitution model and the strategy selected during the multi-step process described above. The calculation was performed on the 86 unique sequences. The analysis of the *coxIII* data set was performed on the 14 unique sequences by using a GTR + 1 substitution model. The analysis of the ITS rDNA region was carried out on a partitioned data set by using a SYM + Γ model for ITS1, a GTR + Γ model for ITS2, and a JC model for 5.8 rRNA partition. The calculation was performed on 19 unique sequences. All the parameters were unlink among partitions. In the BI analyses, two parallel Markov chain Monte Carlo (MCMC) runs were carried out for 3 million generations.
Table 3. PCR cycling conditions.

<table>
<thead>
<tr>
<th>Region</th>
<th>Initial denaturation</th>
<th>Denaturation</th>
<th>Annealing</th>
<th>Extension</th>
<th>Cycles</th>
<th>Final extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>rbL</td>
<td>94°C (4 min)</td>
<td>94°C (1 min)</td>
<td>54°C (1 min)</td>
<td>72°C (2.0 min)</td>
<td>35×</td>
<td>72°C (10 min)</td>
</tr>
<tr>
<td>trnG-acc</td>
<td>94°C (2 min)</td>
<td>94°C (1 min)</td>
<td>62°C (1 min)</td>
<td>72°C (1.5 min)</td>
<td>40×</td>
<td>72°C (10 min)</td>
</tr>
<tr>
<td>codII</td>
<td>95°C (2 min)</td>
<td>94°C (1 min)</td>
<td>50°C (1 min)</td>
<td>72°C (1.5 min)</td>
<td>37×</td>
<td>72°C (10 min)</td>
</tr>
<tr>
<td>ITS rDNA</td>
<td>94°C (5 min)</td>
<td>94°C (1 min)</td>
<td>50°C (1 min)</td>
<td>72°C (1.5 min)</td>
<td>35×</td>
<td>72°C (10 min)</td>
</tr>
</tbody>
</table>

each with one cold and three heated chains. Trees and parameters were sampled for every 100 generations. Convergence of the two cold chains was checked and “burn-in” was determined using the “sump” command. Bootstrap analyses were performed by maximum likelihood (ML) and weighted parsimony (wMP) criteria using GARLI, version 0.951 (Zwickl 2009) and PAUP*, version 4.0b10 (Swofford 2002), respectively. ML analyses consisted of rapid heuristic searches (100 pseudo-replicates) using automatic termination (genthreshfortopterm command set to 100,000). The wMP bootstrapping (1,000 replications) was performed using heuristic searches with 100 random sequence addition replicates. Tree bisection-reconnection swapping random addition of sequences (the number limited to 10,000 for each replicate), and gap characters treated as a fifth character state. The weight to the characters was assigned using the rescaled consistency index on a scale of 0–1.000. New weights were based on the mean of the fit values for each character over all of the trees in memory.

Morphometric analyses. For each strain, 20–25 adult semicells were randomly chosen for geometric morphometric investigation. In total, 10 fixed landmarks were depicted in different positions on the semicells, including the tips of the spines. In addition, 12 sliding landmarks, depicting outline curves along the semicell outlines were also digitalized (Fig. 1). For the details of the landmark digitalization on desmid semicells and description of different landmark types, see Neustupa et al. (2010) and Nemjová et al. (2011). The TPS-series software (available at http://life.bio.sunysb.edu/morph/) was used for most of the morphometric analyses. The generalized Procrustes analysis (GPA) standardized the size and optimized their rotation and translation so that the distances between the corresponding landmarks of the investigated objects were minimized (Zelditch et al. 2004). Correlation between Procrustes and the Kendall tangent space distances was assessed to ensure that the variation in shape was small enough to allow subsequent analyses (Zelditch et al. 2004). Indeed, this correlation was very high (r = 0.999), and hence, we proceeded with further statistical analyses. The landmark configurations of the semicells were symmetrized according to Klingenberg et al. (2002). The principal component analysis (PCA) of geometric morphometric data was conducted on the entire set of 805 semicells acquired from 33 Xanthidium strains. Scores of the objects on the non-zero principal component (PC) axes were used for the canonical variates analysis (CVA) aimed at separation of individual phylogenetic lineages. The significance of this analysis was assessed by the Wilk’s λ in PAST, ver. 2.13 (Hammer et al. 2001). The leave-out cross-validation tests were also conducted to test for the group assignment of individual semicells on the basis of geometric morphometric data. Similarly, PCA was separately conducted on the set of seven X. cristatum strains and shape separation of individual semicells into three groups defined by molecular data was tested by the canonical discrimination analysis. The characteristic cell shapes of individual groups were reconstructed in TpsSuper, ver. 1.14. The Procrustes distances in shape of individual semicells were plotted against the Kimura 2-parameter genetic distances acquired from the molecular data. The genetic distances among strains evaluated by the ITS1, ITS2, ITS1 + 2, and trnG acc markers were used in four separate linear regression analyses. The F-tests for the equality of regression slopes between pairs of individual analyses were used to test for the differences in correlation of shape characteristics of semicells and genetic distances evaluated by different molecular markers.

RESULTS

Morphology of strains. The cells of all the investigated Xanthidium strains were readily identifiable as either X. antilopaeum or X. cristatum. Within X. cristatum, the cells of all strains had 10 spines per semicell, divided into four pairs and two singles (Fig. 2, A–C). However, within the traditional species boundaries, there still were remarkable differences in the morphology of individual strains (Figs. 2–5). Most of these differences corresponded to taxonomic definitions of traditional subspecific taxa, such as individual varieties. The strains representing X. cristatum var. cristatum Ralfs (H 59, ASW 07060, and ASW 07101) had relatively small cells (~40 × 35 μm without spines) and either one or two tubercles in the semicell center (Fig. 4A). In some cells, the tubercles were strongly reduced or even lacking. Conversely, cells of X. cristatum var. uncinatum Ralfs (H 12) were distinctly larger than the nominate variety (~60 × 55 μm without spines) and they differed by the upwards curved paired spines and the characteristic central ornamentation consisting of a circle of large granules (Fig. 4B). Finally, the characteristic feature of strains representing X. cristatum var. scrobiculatum Scott et Grönblad (H 08, H11, and ASW 07102) was their central ornamentation that was built of a variable number of shallow pits (scrobiculae; Fig. 4C).
Within _X. antilopaeum_, all the strains had eight spines per semicell, but they were mutually different because of the arrangement of the spines, the pattern of the central scrobiculae, and the cell dimensions. Most of the strains (H 21, H 23, H 25, H 27, H 29, H 31, H 32, and SVCK 28) fitted well into the diagnosis of the nominate variety of _X. antilopaeum_. This has been characterized by comparatively wide cells and the central ornamentation consisting of an approximately elliptical group of shallow pits (Fig. 4D). The morphology of strain H 17 perfectly corresponded to that of _X. antilopaeum var. basiornatum_ B. Eichler et Raciborski. This taxon has been distinguished on the basis of spines with a stout base, by a distinct central protuberance, and particularly by a horizontal series of 12–14 supraisthmal shallow pits located immediately above the isthmus (Fig. 4E). In _X. antilopaeum var. planum_ Roll (H 15, H 18, H 28, and SVCK 74) both the apical and lateral spines were downwards curved and the central ornamentation was built of a central protuberance surrounded by a circle of shallow pits (Fig. 4F). The single strain identified as _X. antilopaeum var. laeve_ Schmidle (H 20) was characterized by large and comparatively long cells (~75 × 60 μm without spines) with a relatively open sinus. The cell wall was either smooth or a central group of several shallow pits was present (Fig. 4G). _Xanthidium antilopaeum var. polymazum_ Nordst. (H 30) was differentiated by conspicuous ornamentation consisting of a transversal, subapical arc of granules (Fig. 4H). _Xanthidium antilopaeum var. minneapolitense_ Wolle (SVCK 147) was typical by the presence of a subapical arc of granules and two additional spines (one on either face of the cell). However, it should be noted that these spines were often reduced to conspicuous granules (Fig. 4I) or they were even lacking in some cells. Two strains of _X. antilopaeum var. incrassatum_ (Grönblad) Förster (H 10 and H 19) differed from the nominate variety by rather large cells (~65 × 65 μm without spines) and the cell wall thickening in the central region of the semicells. Other parts of the cell wall were either smooth, or the subapical group of indistinct shallow pits was present.

![Fig. 2. LM pictures of selected strains.](image-url)
Finally, *X. antilopaeum* var. *depauperatum* W. et G.S.West (strain H22) was characterized by the central ornamentation composed of two concentric rings of distinct pits surrounding a middle granula (Fig. 5B), and by obtuse lateral angles of the semicells. Conversely, another typical feature of this variety, a conspicuous variation in the number, length, and arrangement of spines (West and West 1912) was not observed. The other investigated strains (ASW 07105, ASW 07106, ASW 07107, SVCK 105, SVCK 281, SVCK 343, and H 26) fitted well into morphological species definition of *X. antilopaeum*, but they could not be determined to belong to any of the traditional varieties (Figs. 3 and 5).

Morphology of our *S. tumidum* isolate (strain H 76) corresponded with the morphological delimitation of this species (Fig. 3I). LM and SEM pictures of all the strains are available online as supplementary material.

Molecular phylogenetic analyses. The Bayesian phylogenetic tree constructed on the basis of the partitioned *rbcL + coxIII* data set (Fig. 6) inferred all the investigated *Xanthidium* strains in a single, well-resolved clade (BI/ML/MP support 1.00/98/98). Among the traditionally recognized *Xanthidium* species (*X. antilopaeum, X. cristatum, X. hastiferum, X. subhastiferum*, and *X. brebissonii*), this clade also comprised *S. tumidum*, a species having smooth cells lacking a series of spines that was considered typical for the genus *Xanthidium*. The *rbcL* sequences of our isolate H 76 and the strain SVCK 85 (accession no. AJ553972.1) were identical, corroborating the correct placement of *S. tumidum* within the *Xanthidium* clade. All but one of the *X. antilopaeum* strains were closely related, inferred in a single clade together with *X. cristatum, X. hastiferum*, and *X. subhastiferum*. The exception was *X. antilopaeum* var. *basiornatum* that formed a well-resolved clade together with *S. tumidum*. *Xanthidium armatum*, a conspicuous desmid species characteristic by stout, bi- or trifurcate spines, was recognized in a sister position to all the *Xanthidium* taxa. The relation of *X. armatum* to other *Xanthidium* taxa was moderately supported (BI/ML/MP support 0.98/-/-77). Our
phylogenetic analysis thus recognized the monophyly of almost all the *Xanthidium* species with known molecular data. The single exception was *X. octocorne*, a small desmid with cells characteristically possessing eight long spines. This species was nested within the firmly supported “Staurodesmus 1” lineage (*sensu* Gontcharov 2008), distantly related to the *Xanthidium* clade.

To better resolve the phylogenetic relationships of the *X. antilopaeum* and *X. cristatum* strains, we conducted further analyses of two fast-evolving loci, i.e., plastid *trnG*\[^{acc}\]* and nuclear ITS rDNA (Fig. 7). The sequencing of *trnG*\[^{acc}\] was successful in all the 32 investigated strains; however, high-quality ITS rDNA sequences were obtained for only 27 of them. Despite repeated DNA isolation and PCR amplification, poor sequencing products were constantly obtained for the strains H18, H22, H27, H28, and SVCK 343, so that these were omitted from the ITS rDNA phylogenetic analysis. A comparison of the phylogenetic trees, estimated separately for the *trnG*\[^{acc}\] and ITS rDNA data sets, resulted in the detection of several reciprocal monophyletic clades that were concordant between the unlinked loci. However, an obvious incongruence was detected in the topology of the uppermost clades in Figure 7 (see below). In general, both single-loci trees were congruent in resolving two major lineages corresponding to *X. antilopaeum* and *X. cristatum*. Within the latter lineage, three well-resolved clades were determined, corresponding to the traditional subspecific taxa *X. cristatum* var. *cristatum*, *X. cristatum* var. *scrobiculatum*, and *X. cristatum* var. *uncinatum*. Within the *X. antilopaeum* complex, four clades were reciprocal monophyletic: (i) the traditional subspecific taxon *X. antilopaeum* var. *planum*, (ii) a clade comprising *X. antilopaeum* var. *incrassatum* and two morphologically distinct strains SVCK 105 and SVCK 343, (iii) a clade containing morphologically about similar taxa *X. antilopaeum* var. *polymazum* and *X. antilopaeum* var. *minneapolitense*, and (iv) a poorly resolved clade of *X. antilopaeum* var. *laeve* and *X. antilopaeum*, strain H26. Three remaining *X. antilopaeum* clades inferred from the *trnG*\[^{acc}\] data

Fig. 4. SEM pictures of selected strains. (A) *Xanthidium cristatum* var. *cristatum*, strain H 59. (B) *X. cristatum* var. *uncinatum*, strain H 12. (C) *X. cristatum* var. *scrobiculatum*, strain H 11. (D) *X. antilopaeum* var. *antilopaeum*, strain H 29. (E) *X. antilopaeum* var. *basiornatum*, strain H 17. (F) *X. antilopaeum* var. *planum*, strain H 28. (G) *X. antilopaeum* var. *laeve*, strain H 20. (H) *X. antilopaeum* var. *polymazum*, strain H 30. (I) *X. antilopaeum* var. *minneapolitense*, strain SVCK 147. Scale bar = 10 μm.
were either polyphyletic or unresolved in the ITS rDNA phylogram. *Xanthidium antilopaeum* var. *antilopaeum* strains were resolved monophyletic in the ITS rDNA phylogenetic tree, but formed two distinct clades in the trnG\textsubscript{acc} phylogeny. Similarly, three *X. antilopaeum* strains ASW07105, ASW07106, and ASW07107 had identical trnG\textsubscript{acc} sequences, but were recovered in two different clades in the ITS rDNA tree.

Morphometric analyses. The CVA of geometric morphometric data of the entire set of 805 semicells (Fig. 8A) was analyzed to evaluate separation of *X. antilopaeum*, *X. cristatum* and *X. antilopaeum* var. *basiornatum* that formed three different phylogenetic lineages. The ordination resulted in their highly significant separation (Wilk's $\lambda = 0.094$, $P < 0.0001$). The leave-one-out cross-validation tests illustrated the 100% correct classification of the *X. cristatum* var. *uncinatum* and *X. cristatum* var. *cristatum* semicells; whereas there were 98.7% of the *X. cristatum* var. *scrobiculatum* semicells correctly classified on the basis of geometric morphometric data.

The linear regression analyses of morphometric versus genetic distances illustrated that the distance in shape of semicells was significantly related to their genetic distances (Fig. 9). However, this relation was relatively weak in the ITS1, ITS2, and ITS1 + two regions. Conversely, a stronger relation was revealed between the Procrustes distance and the Kimura 2-parameter distance evaluated by the sequences of the trnG\textsubscript{acc} plastid encoded marker. This difference in relation of morphology and sequence data evaluated by different molecular markers was also confirmed by the F-tests for the equality of regression.
slopes among individual analyses. The slope of \(\text{trnC}^{\text{AAC}} \)-based regression analysis differed significantly from slopes of all the three remaining analyses (\(F = 11.65 - 13.48, P = 0.0003 - 0.0007 \)). On the other hand, the differences among slopes of regression analyses based on different parts of the ITS region were insignificant (\(F = 0.08 - 0.99, P > 0.05 \)).

DISCUSSION

Our molecular phylogenetic analyses based on the partitioned \(\text{rbcL} + \text{coxIII} \) data set confirmed the monophyly of almost all the traditional *Xanthidium* species examined, including our target taxa *X. antilopaeum* and *X. cristatum*. This has previously been indicated by other authors as well (Hall et al. 2008, Gontcharov and Melkonian 2011). The single exception was *X. octocorne*, which was nested within the firmly supported "*Staurodesmus 1"* clade (sensu Gontcharov 2008). Since this strongly supported lineage also contains *Staurodesmus triangularis* (Lagerheim) Teiling (Gontcharov and Melkonian 2011), the type species of the genus *Staurodesmus* (Compere/C18 ere 1977), we decided to establish a new combination *Staurodesmus octocornis* (see chapter Taxonomical consequences). This separation of *X. octocorne* from *Xanthidium* is a logical consequence of its longtime recognized controversial taxonomical position.
Xanthidium octocorne does not match the morphological characteristics of the genus, having no central protuberance and only a single series of spines. It is likely that some other Xanthidium species with a similar morphology, such as X. smithii, X. impar, or X. bifidum, may in fact also be a part of the Staurodesmus lineage. However, this hypothesis requires further molecular phylogenetic confirmation.

The analysis of the rbcL + coxIII data set also confirmed the unexpected phylogenetic position of S. tumidum, which was already suggested by Gontcharov et al. (2003). The phylogenetic analysis of two different S. tumidum strains significantly inferred both isolates into the above-mentioned robust Xanthidium clade. Having three- or four-radiate, smooth cells lacking a series of spines typical for the genus, this large and conspicuous desmid matches the generic diagnosis of Xanthidium even less than X. octocorne (e.g., Coesel and Meesters 2007). However, a possible evolutionary relationship between S. tumidum and X. armatum has already been suggested by Meindl (1986) and Höftberger and Meindl (1993) on the basis of their similar, peculiar way of nuclear migration during the semicell morphogenesis. Such a morphological peculiarity within a well-supported monophyletic genus may be no exception among Desmidiales.
Micrasterias. The last species M. dickiei (Ralfs) Škaloud et al. is morphologically relatively similar to S. tumidum, also having three-radiate, smooth-walled cells (Coesel and Meesters 2007). Škaloud et al. (2011) illustrated the morphological evolution of the genus S. tumidum from a M. pinnatifida-like ancestor into M. dickiei. This supposedly proceeded from the occasional 3-radiate form of M. pinnatifida by shape simplification that usually accompanies formation of 3-radiate forms (e.g., Teiling 1956). A similar evolutionary scenario might have taken place in S. tumidum. Triradiate morphs of Xanthidium taxa have occasionally been reported (West and West 1912) and several of them were even described as separate taxa (e.g., Lundell 1871, Irénéé-Marie 1939, Williamson 2002). The accompanying shape simplification would explain the loss of spines during the morphological evolution of S. tumidum from a Xanthidium-like ancestor. Similar to X. octocorne, the taxonomic position of S. tumidum has been the subject of some controversy in the past. Besides the genus Staurastrum, it was attributed to the genus Staurodesmus (e.g., Lenzenweger 1997). In addition, Wille (1890) included it in his newly created genus Pleurenterium. This taxon was originally described by Lundell (1871) as a subgenus of Staurastrum, on the basis of a different, parietal form of chloroplasts. Gay (1884) proposed to classify Pleurenterium as a section of Xanthidium on the basis of similar, parietal chloroplasts of both taxa. He also pointed out to the occasional occurrence of three-radiate forms in other species of the genus Xanthidium. Interestingly, presented phylogenetic data fully support these early taxonomic studies. It is a matter of speculation whether some other morphologically similar Staurastrum taxa, that have been separated from Staurastrum into Pleurenterium on the basis of their parietal chloroplasts, such as S. longispinum (Lagerheim 1888) and S. grande (Wille 1890), may also belong to Xanthidium.

The analyses of plastid trnG
tacc and nuclear ITS rDNA resulted in trees resolving two major lineages corresponding to the traditional taxa X. antilopaeum and X. cristatum (Fig. 7). This suggests that the traditional morphology-based discriminative criteria of both species (the different number of spines per semicell) may generally still be considered relevant. However, our phylogenetic analyses also suggested that X. antilopaeum var. basiornatum does not belong to the X. antilopaeum/X. cristatum clade and forms a well-resolved independent clade together with S. tumidum. This would imply that X. antilopaeum var. basiornatum, although possessing eight spines per semicell like other X. antilopaeum taxa, in fact represents an additional separate species of the genus Xanthidium. This hypothesis was also corroborated by subsequent geometric morphometric analysis that unequivocally separated populations of X. antilopaeum, X. cristatum, and X. antilopaeum var. basiornatum (Fig. 8A). Therefore, we propose that the last taxon should be established as a separate species (see Taxonomical consequences). It should be noted that Förster (1983) classified X. antilopaeum var. basiornatum as a separate variety of X. canadense (Joshua) Förster. However, since there is a clear morphological difference between both taxa, Förster’s opinion has not been generally accepted, and X. antilopaeum var. basiornatum has in reputable desmid monographs (e.g., Lenzenweger 1997) still been kept as a variety of X. antilopaeum. We can see that the taxonomic dilemma concerning the correct classification of this taxon has also been reflected by its isolated phylogenetic position. However, the molecular data, together with the morphometric analysis, unequivocally indicated that X. basiornatum should be treated as a separate species.

The molecular data revealed three well-resolved clades within traditional X. cristatum that corresponded to the traditional varieties X. cristatum var. cristatum, X. cristatum var. scrobiculatum, and X. cristatum var. uncinatum. This classification pattern was also confirmed by the geometric morphometric analysis that illustrated highly significant semicell shape differences among these three taxa (Fig. 8B). These results, together with the fact that the general morphology of X. cristatum var. uncinatum and X. cristatum var. scrobiculatum is clearly different from the nominate variety (compare Figs. 2, A–C and 4, A–C, see also Appendix S1 in the Supporting Information), led us to the conclusion that they should be regarded as separate species (see Taxonomical consequences). Conversely, X. cristatum var. bituberculatum, described by Lowe (1923), which differs from the nominate variety basically by the presence of two tubercles instead of one in the central area of the semicells, should not be considered a separate taxon.

As already mentioned above, the form of central

Fig. 9. Linear correlation analyses of morphometric differences among strains (Procrustes distance) and their genetic distances evaluated by the ITS1, ITS2, ITS1 + 2 and trnG
acc regions. The linear correlations are represented by Pearson’s r values. Significances are given by the P values: *** P < 0.001, * P value 0.01–0.05.
ornamentation in X. cristatum may be extremely variable. The single strain ASW 07060 had either one tubercle or the central ornamentation was completely lacking. Semicells with either one or two tubercles were also found in strains ASW 07101 and H 59. The latter strain even had numerous Janus cells with the semicells corresponding either to X. cristatum var. bituberculatum or to X. cristatum var. cristatum (Fig. 4A, see also Appendix S1). Therefore, traditional X. cristatum var. bituberculatum should be considered an ecomorph of X. cristatum sensu stricto.

Comparing the lineages that were delineated within the traditional X. antilopaeum complex using the chloroplast and nuclear sequences, we observed a large degree of congruence. Nearly all the trnG\textsubscript{acc} clusters were resolved as monophyletic lineages in the ITS rDNA data set (Fig. 7). However, incongruence among loci was detected in the topology of strains H 21, H 22, H 23, H 25, H 27, H 29, H 31, H 32, SVCK 28, ASW 07105, ASW 07106, and ASW 07107. The most likely explanation of this phenomenon is that the branching order of the “species tree” might differ from that of the “genes tree” because of incomplete lineage sorting from an ancestral polymorphic gene pool (Pamilo and Nei 1988, Rosenberg 2003). Accordingly, the conflicting topologies could be caused by different rates of loci coalescence and the stochastic processes of loci differentiation (Carstens and Knowles 2007). The single strain ASW 07060 had either one

failure to obtain high-quality ITS rDNA sequences for all the X. antilopaeum strains could be explained by the existence of many paralogous copies of the ITS rDNA locus, which have not yet been sufficiently homogenized by concerted evolutionary processes (Rich et al. 1997). Finally, reliability of the trnG\textsubscript{acc} data set to resolve the real “species tree” has also been supported by the significantly better linear correlation between the matrices of morphological differences and the trnG\textsubscript{acc}-based genetic distances among X. antilopaeum strains, as compared with the ITS rDNA data set (Fig. 9). These results indicated the limited gene flow among the lineages as delineated by trnG\textsubscript{acc}-based phylogeny, resulting in subtle morphological differences among the recently diversified species. Summing up, the trnG\textsubscript{acc} sequences could provide good molecular markers for the species delimitation in X. antilopaeum species complex, even though they were less variable than the ITS rDNA sequences. The usefulness of the trnG\textsubscript{acc} intron sequences for resolving intraspecific diversity within various desmid species complexes has recently been also shown by Neustupa et al. (2010, 2011b), Nemjová et al. (2011), and Skaloud et al. (2012). We therefore believe that the trnG\textsubscript{acc} marker should be considered a good candidate for a green algal barcode, in particular for Streptophytes (Shaw et al. 2005, Hall et al. 2010). Furthermore, the phylogenetic tree inferred from the trnG\textsubscript{acc} sequences could provide insights into the morphological evolution within the X. antilopaeum species complex. For example, the rapid morphological diversification has been observed in a morphologically very diverse group of X. antilopaeum var. increasatum and strains SVCK 105 and SVCK 343. On the other hand, genetically identical taxa X. antilopaeum var. polymazum and X. antilopaeum var. minneapoliense shared a great deal of morphological similarity (Fig. 4, H–I). Already Grönblad (1921) pointed out to the fact that the accessory subapical spines in X. antilopaeum var. minneapoliense, which are the only distinguishing characteristic between both these varieties, may very often be reduced, or even absent, and that these two varieties would better be merged together. As our morphological observations fully confirmed the Grönblad’s (1921) data, we can conclude that X. antilopaeum var. minneapoliense may most probably only represent the ecomorph of X. antilopaeum var. polymazum. Despite this, we feel it is premature to propose any formal taxonomic changes within the X. antilopaeum complex (other than var. basiornatum) unless the trnG\textsubscript{acc} phylogeny is supported by additional molecular markers.

Recent polyphasic studies, employing light microscopic, ultrastructural, morphometric and molecular phylogenetic methods, that evaluated the validity of desmidian species concepts, particularly in the genus Micrasterias (Neustupa et al. 2010, 2011a,b, Nemjová et al. 2011), illustrated apparent cryptic diversity in a number of traditional species. Several morphologically defined infraspecific taxa were shown to be artificial, but, on the other hand, several traditional varieties obviously represented independent species. Our data revealed a pattern similar to the above-mentioned studies. Although several examples of ill-defined traditional subspecific taxa were found (X. cristatum var. bituberculatum and X. an-
tilopaeum var. minneapoliiense), the major part of morphological variability among the investigated strains was phylogenetically relevant. Consequently, several infraspecific taxa should now be established as separate species. This is fully in accordance with the view of Kouwets (2008) who stated, “In desmids, to achieve a feasible taxonomy, ‘stable’ varieties should be abandoned altogether. Morphological variations induced by the environment should merely be characterized as ‘ecomorpha’ without any taxonomic status.” It is obvious, however, that in this respect, phylogenetic species-level desmid taxonomy is still at the beginning.

Brook (1981) estimated that more than 6,000 species of desmids have been described from all parts of the world. However, the recent studies on phylogenetic species concepts in desmid taxa (Neustupa et al. 2010, 2011a,b, Nemjová et al. 2011, Skaloud et al. 2012, this study) unanimously illustrated that some traditional morphological species (such as \textit{M. fimbriata}, \textit{Pleurotaenium ehrenbergii}, or \textit{X. cristatum}) actually consist of at least two or three phylogenetic species recognizable using morphometric methods. Conversely, the number of traditional taxa that were found phylogenetically homogenous (such as \textit{M. rotata} or \textit{Pleurotaenium archeri}) was distinctly lower. Therefore, we believe that with the wide employment of the molecular methods in species-level taxonomy of Desmidiales, about twice-as-many species may be recognized than previously described on the basis of purely morphological data.

The above-mentioned studies on species concepts of desmids also revealed a clear geographic signal among several investigated species indicating that the actual species diversity of these relatively large protists may be related to either the patterns of their geographic distribution or the macroscale climatic factors. The phylogenetic structure of the \textit{M. crux-melitensis}/\textit{M. radians} complex (Neustupa et al. 2010) reflected the origin of strains, separating the European, African, and Asian strains. Nemjová et al. (2011) concluded that the Australian strains of the traditional \textit{M. truncata} probably represented a separate species. Neustupa et al. (2011b) illustrated that the two firmly delimited phylogenetical lineages within the conspicuous desmid species \textit{M. fimbriata} exhibited largely disparate geographic distribution patterns across Europe. Although we only analyzed European and North American isolates, our results certainly do not contradict the above-mentioned observations. The phylogenetic tree based on the \textit{trnS-gU} data set indicated several cases of possible geographical restriction among \textit{Xanthidium} phylogenetic taxa. All the three strains of traditional \textit{X. antilopaeum} (ASW 07105, ASW 07106, and ASW 07107) that originated from arctic regions (Greenland, St. Matthew Island in the Bering Sea, respectively) were inferred in a single clade (Fig. 7). In addition, the phylogenetic analysis also separated the central European and western European representatives of \textit{X. antilopaeum var. antilopaeum} (Fig. 7), indicating a geographic pattern very similar to that observed in two phylogenetic species of traditional \textit{M. fimbriata} (Neustupa et al. 2011a,b). The differences in distribution pattern may also be anticipated in three phylogenetic taxa of \textit{X. cristatum}. Whereas the nominate variety and var. \textit{uncinatum} are relatively common all across Europe (West and West 1912, Lenzenweger 1997, Kouwets 1999, Abdelahad et al. 2003, Coesel and Meesters 2007, St’astný 2010), we could not find any reliable report of morphotypes corresponding to var. \textit{scrobiculatum} outside the western European regions typical with the oceanic climate.

\textbf{Taxonomic consequences.} On the basis of the data presented in this study, some taxonomical changes appeared to be necessary. By the transfer of \textit{X. octocorne} to \textit{Staurodesmus}, the genus \textit{Xanthidium} formally remains monophyletic. Since a type species of \textit{Xanthidium} has not yet been designated (Ralfs 1848, Guiry and Guiry 2012), and the definition of a type species is crucial for the nomenclatural identity of a genus, we state, in accordance with the ICBN article 37.3 (McNeill et al. 2006), that \textit{X. cristatum}, one of the species that have originally been included into the genus \textit{Xanthidium} by Ralfs (1848), should be the type species of this genus.

\textit{Xanthidium} Ralfs 1848, Brit. Desmidieae, p. 111.

Type species (here designated): \textit{Xanthidium cristatum} Ralfs 1848, Brit. Desmidieae, p. 115, Pl. 19, Fig. 3A–C.

\textbf{Synonym:} \textit{Xanthidium cristatum} var. \textit{bituberculatum} Lowe 1923, Canadian Arctic Exped. 4: p. 27, Fig. 4.

\textit{Staurodesmus octocornis} (Ralfs) Stastny, Skaloud et Neustupa \textbf{comb. nov.}

Basionym: \textit{Xanthidium octocorne} Ralfs 1848, Brit. Desmid., p. 116, Pl. 20, Fig. 2.

\textbf{Synonym:} \textit{Arthrodesmus octocornis} (Ralfs) Archer in Pritchard 1861, Hist. Inf., p. 736.

\textit{Xanthidium tumidum} (Ralfs) Stastny, Skaloud et Neustupa \textbf{comb. nov.}

Basionym: \textit{Staurastrum tumidum} Ralfs 1848, Brit. Desmid., p. 126, Pl. 21, Fig. 6.

\textbf{Synonyms:} \textit{Stauroastrum tumidum} (Ralfs) Teiling, 1967, Ark. F. Bot., II, 6(11), p. 578, Pl. 22, Fig. 1; \textit{Pleurotenueria tumidum} (Bréb.) Wille 1890, Engler & Prantl, Nat. Pflanzenfam. 1890, p. 11.

\textit{Xanthidium basioratum} (B.Eichler et Raciborski) Stastny, Skaloud et Neustupa \textbf{comb. nov. et stat. nov.}

\textbf{Synonym:} \textit{Xanthidium canadense} (Joshua) Förster var. \textit{basiornatum} (B.Eichler et Raciborski) Förster 1983, Algol. Studies 33, p. 378, Fig. 4.

\textit{Xanthidium uncinatum} (Ralfs) Stastny, Skaloud et Neustupa \textbf{comb. nov. et stat. nov.}

Basionym: \textit{Xanthidium cristatum} var. \textit{uncinatum} Ralfs 1848, Brit. Desmid., p. 115, Pl. 19, Fig. 3D–F.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web site:

Table S1. List of all sequences involved in the phylogenetic analyses, including the GenBank accession numbers for the *rbcl*, *coxIII*, *trnS*acc, and ITS rDNA genes. Strain number abbreviations: ACOI - Coimbra Collection of Algae, Portugal; ACKU - Algal Culture Collection of Kyonggi University, Kyonggi, Korea; CCAP - Culture Collection of Algae and Protozoa, Oban, Scotland, UK; JH - John Hall private collection; M - Culture Collection Melkonian, University of Cologne, Germany (strains available from CCAC); NIES - National Institute for Environmental Studies, Japan; SAG - Sammlung von Algenkulturen der Universität Göttingen, Germany; SVCK - Sammlung von Conjugaten-Kulturen, Germany; UTEX - Culture Collection of Algae at University of Texas, USA.

Appendix S1. LM and SEM pictures of all the *Xanthidium* strains studied.