Chapter 4

Photobiont Diversity in Indian Cladonia
Lichens, with Special Emphasis

on the Geographical Patterns

Tereza Ridka, Ondi‘ej Peksa, Himanshu Rai, Dalip Kumar Upreti
and Pavel Skaloud

1 Introduction

Lichens show distinctive patterns of distribution at both micro and macro levels
(Galloway 2008). Sixteen major biogeographical patterns have been distinguished
in lichens, including cosmopolitan taxa, bipolar taxa, taxa specific for particular
continents or areas, and endemic taxa (Galloway 2008). However, these patterns are
applicable to lichen-forming fungi only. Till date, we have almost no idea about the
biogeography of lichenized algae and cyanobacteria—the photobionts.

During the last 20 years, molecular phylogenetic studies dramatically changed
our views regarding coevolution of lichen partners. Supposed cospeciation and
parallel cladogenesis of mycobionts and photobionts has been generally rejected
(Kroken and Taylor 2000; Piercey-Normore and DePriest 2001), and replaced with
the domestication model, in which the fungal partner could select the best avail-
able photobiont (DePriest 2004). In general, the mycobionts are able to cooperate
with several algal species and to switch them (Muggia et al. 2008; Nelsen and Gar-
gas 2009; Nyati 2007; Piercey-Normore 2006; Wornik and Grube 2010), simulta-
neously, several mycobionts can share single algal partner (Beck 1999; Doering
and Piercey-Normore 2009; Hauck et al. 2007; Piercey-Normore 2009; Rikkinen
et al. 2002). Moreover, lichen algae and cyanobacteria could exhibit their own
environmental requirements, which seem to be independent of particular myco-
bionts to a large extent (Cordeiro et al. 2005; Fernandez-Mendoza et al. 2011;
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Helms 2003; Muggia et al. 2008; Peksa and Skaloud 2011). Naturally, since the
environmental preferences of an organism could be narrowly linked to its distribu-
tion, the geographical pattern of photobionts could be markedly different from that
of their fungal partners.

Both cyanobacteria and algae are microscopic organisms. Moreover, the lichen
vegetative propagules containing both symbionts (soredia, isidia, etc.) are mostly
not much larger than particular algal cells (20-50 um, Biidel and Scheidegger 2008)
and they are capable of being dispersed over large distances as well (Bailey 1976).
The well-known theory of ubiquitous dispersal of microbial species (Finlay and
Clarke 1999) presumed that most organisms smaller then ca 1 mm should occur
worldwide (in a niche-based context only).

Indeed, some photobiont lineages are apparently widely distributed. For ex-
ample, Asterochloris clade A7 (sensu Peksa and Skaloud 2011) has been found in
lichens collected from Europe, USA, and China, indicating its ubiquitous disper-
sal. On the other hand, many photobiont lineages have been reported only from
specific continents or regions. However, because of very uneven distribution of
lichen collections, it is premature to classify them as species with narrow distribu-
tion patterns. For the most studied photobiont genera (Asterochloris, Trebouxia,
Nostoc), majority of reports have been published from Europe and North America
(e.g., Backor et al. 2010; Blaha et al. 2006; Guzow-Krzeminska 2006; Nelsen and
Gargas 2008; O’Brien et al. 2005; Paulsrud et al. 2000; Peksa and Skaloud 2011;
Piercey-Normore 2004, 2006, 2009; Yahr et al. 2004), slightly less from Central
and South America (Cordeiro et al. 2005; Helms 2003; Reis 2005) and Antarctica
(Aoki et al. 1998; Engelen et al. 2010; Nyati 2007; Otalora et al. 2010; Romeike
et al. 2002; Wirtz et al. 2003). However, only few or no data have been reported
from Africa, Asia, Australia, and close islands (Helms 2003; Nelsen and Gargas
2008, 2009; Nyati 2007; Piercey-Normore and DePriest 2001). Therefore, further
exploration of photobionts in these areas is necessary to obtain relevant information
about biogeographical patterns in lichenized algae and cyanobacteria.

2 Objectives

In this study, we investigated Asterochloris photobionts from terricolous lichens
(Cladonia spp.) collected in India and Nepal using DNA sequencing. Traditionally,
Asterochloris (incl. former Trebouxia) species have been determined according to
the morphological features such as cell shape, chloroplast structure, and pyrenoid
ultrastructure. However, a large cryptic variability recently discovered within the
genus (Piercey-Normore and DePriest 2001; Yahr et al. 2004; Skaloud and Peksa
2010) clearly points out the deficiency of morphological features to delimit real spe-
cies entities within Asterochloris. Therefore, we sequenced the internal transcribed
spacer (ITS) ribosomal DNA (rDNA) marker to genetically investigate the diversity
of photobionts in Cladonia lichens. The newly obtained ITS rDNA sequences were
added to the dataset of all sequences deposited in GenBank database to analyze the
phylogenetic position of Indian photobionts and biogeographic patterns of selected
Asterochloris lineages.
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Fig. 4.1 Map showing the sampling localities of Cladonia lichens used in this study

3 Materials and Methods

3.1 Sample Collection

Lichen samples were collected in five different areas in India and Nepal (Fig. 4.1).
Single lichen sample was collected in Maharashtra, Madhya Pradesh, and Assam
states, located in west, central, and north-eastern India, respectively. Three lichen
samples were obtained from collections made in Tamil Nadu state, located in South
India. The majority of lichen thalli were collected in the Himalayas, Uttarakhand, and
Himachal Pradesh states. Finally, two lichen thalli were collected in eastern Nepal.
The collections have been made at different times during the years 2007 and 2010
(Table 4.1).
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3.2 DNA Isolation, Polymerase Chain Reaction (PCR),
and Sequencing

Total genomic DNA was extracted following the standard CTAB protocol (Doyle
and Doyle 1987), with minor modifications. The total genomic DNA was dissolved
in sterile dH,0O and amplified by polymerase chain reaction (PCR). The ITS1-5.8S-
ITS2 rDNA region was amplified using universal primer ITS4-3' (5'-TCCTCCGCT-
TATTGATATGC-3"; White et al. 1990) and the algal-specific primer nr-SSU-1780-5'
(5'-CTGCGGAAGGATCATTGATTC-3'; Piercey-Normore and DePriest 2001). All
PCR reactions were performed in total volume of 20 pul contained 12.4 pl of sterile
Mili-Q water, 2 pl of AmpliTaq Gold® 360 Buffer 10x (Applied Biosystems, Life
technologies, Carlsbad, CA, USA), 1.5 ul of MgCl, (25 mM), 0.4 pl of dNTP mix
(10 mM), 0.25 pl of each primer (25 nM), 2 ul of 360 GC Enhancer, 0.2 pl of Am-
pliTaq Gold® 360 DNA Polymerase and 1 ul of DNA (10 ng:1""). PCR and cycle-
sequencing reactions were performed in a Touchgene Gradient cycler (Krackeler
Scientific, Albany, NY, USA). PCR amplification of the algal ITS rDNA began with
an initial denaturation at 95 °C for 10 min, followed by 35 cycles of denaturing at
95°C for 1 min, annealing at 50°C for 1 min and elongation at 72°C for 1 min,
with a final extension at 72°C for 10 min. The PCR products were quantified on
a 1% agarose gel stained with ethidium bromide and purified using the JetQuick
PCR Purification kit (Genomed, Lohne, Germany), according to the manufacturer’s
protocols. The purified amplification products were sequenced with PCR primers
using an Applied Biosystems (Seoul, Korea) automated sequencer (ABI 3730x1) at
Macrogen Corp. in Seoul, Korea. Sequencing reads were assembled and edited us-
ing the SeqAssem programme (Hepperle 2004).

4 Phylogenetic Analyses

The newly obtained ITS rDNA sequences were added to the concatenated
(ITS rDNA, actin I locus) alignment analyzed in Skaloud and Peksa (2010).
Then, we added several additional ITS rDNA sequences obtained from GenBank
to cover all Asterochloris diversity. The final concatenated matrix containing 69
taxa, was 1137 bp long, and was 100 % filled for the ITS data and 67 % filled for
the actin data (Table 4.2). The matrix is available from Pavel Skaloud The phylo-
genetic tree was inferred with Bayesian inference (BI) using MrBayes version 3.1
(Ronquist and Huelsenbeck 2003). The analysis was carried out on the partitioned
dataset using the strategy described in Peksa and Skaloud (2011). Bootstrap
analyses were performed by maximum likelihood (ML) and weighted parsimony
(WMP) criteria using GARLI, version 0.951 (Zwickl, 2006) and PAUP version
4.0b10 (Swofford 2002), respectively. ML analysis consisted of rapid heuristic
searches (100 pseudo-replicates) using automatic termination (genthreshforto-
poterm command set to 100,000). The wMP bootstrapping (1,000 replications)
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was performed using heuristic searches with 100 random sequence addition rep-
licates, tree bisection and reconnection (TBR) swapping, and random addition
of sequences (the number limited to 10,000 for each replicate). The weight to
the characters has been assigned using the rescaled consistency index, in a scale
from 0 to 1,000. New weights were based on the mean of the fit values for each
character over all of the trees in memory.

To map the biogeographic information onto the phylogenetic tree, we prepared
a dataset of 319 ITS rDNA sequences (obtained in this study and acquired from
GenBank database) with known biogeographic data. The distribution of Asterochlo-
ris in particular continents was finally shown for those clades containing at least ten
sequences with known origin.

5 Results and Discussion

5.1 Diversity of Asterochloris photobionts

In total, 57 natural samples of various Cladonia species were collected from five
different areas in India and Nepal. However, the amplification of ITS rDNA region
was successful in only 20 of these samples (Table 4.1). Unsuccessful amplification
of more than half of the samples might have been caused by their age and storage
conditions (some Cladonia samples were more than 4 years old) or by the pres-
ence of nonspecific inhibitors. Usually, single photobiont has been detected in each
lichen sample. However, in three cases we found two different Asterochloris geno-
types in the single lichen thallus (samples IH2, ITH8, and [H21).

All Cladonia samples were found to be associated with green algae belonging
to the genus Asterochloris. The Bayesian analysis of the concatenated ITS rDNA
and actin type I dataset led to the recognition of 20 lineages designated as clades
1-16 (according to Skaloud and Peksa 2010), clades A4, A9 (according to Peksa
and Skaloud 2011), and two novel clades I1 and I2 (Fig. 4.2). The newly obtained
photobiont sequences were inferred in six clades (I1, 12, 1, 9, 12 and 16). Two novel
clades I1 and I2, exclusively formed by photobionts of Indian Cladonia lichens,
were genetically considerably different from all other known Asterochloris lineages.
Therefore, they very probably represent new, undescribed photobiont species. The
clade I1 consisted of six photobiont sequences obtained from four Cladonia species
(C. rangiferina, C. furcata, C. pyxidata, and C. corymbescens) collected in the Hi-
malayas at relatively high altitude (2,300-3,700 m asl; Fig. 4.3). The clade 12 com-
prised only three photobiont sequences obtained from Cladonia lichens collected in
both the Himalayas (samples 14 and [H26) and South India (sample IH23). All three
lichen samples were also collected at high altitudes (2,607-3,250 m asl). Interest-
ingly, all photobionts were found in Cladonia furcata, suggesting their specificity
for this fungal partner.
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Fig. 4.2 Phylogenetic tree and biogeography of lichen photobiont 4sterochloris. Bayesian analy-
sis is based on the combined and partitioned internal transcribed spacer (ITS) ribosomal DNA
(rDNA) and actin type I dataset using a HKY+I model for ITS1 and ITS2, F81 model for 5.8
ribosomal RNA (rRNA) partition, a HKY+I" model for the actin-intron 206, GTR+I" model for the
actin intron 248 and K80+ model for the actin-exon partition. Values at the nodes indicate sta-
tistical support estimated by three methods: MrBayes posterior node probability (/eff), maximum
likelihood bootstrap (in the middle) and maximum parsimony (right). Thick branches represent
nodes receiving high Bayesian support (>0.99) or consisting of genetically identical strains. New
sequences from Indian Cladonia lichens are given in bold. Strain affiliation to 20 clades is indi-
cated. Biogeography of selected lineages (those containing at least ten sequences with known ori-
gin) is shown next to the tree, including the total number of occurrences on each continent. Scale
bar—estimated number of substitutions per site
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Fig. 4.3 Differences in the distribution of selected three Asterochloris clades along the altitudinal
gradient. Box plots are based on altitudinal data of Cladonia samples analyzed in this study. All
samples were collected in India and Nepal

The majority of investigated photobionts (found in 12 Cladonia samples
belonging to 7 different species) were inferred in the clade 9. The clade is known
as a lineage of North, Central, and South American lichen photobionts, having low
specificity towards the lichen-forming fungi (it associates at least with 18 species
from 5 lichen genera; Cordeiro et al. 2005; Nelsen and Gargas 2006; Piercey-Nor-
more and DePriest 2001; Reis 2005; Yahr et al. 2004). Our lichen samples contain-
ing clade 9 photobionts were collected from various substrate types, such as bare
soil, red hard soil, soil in coniferous forest, or rocks. In comparison with algal geno-
types inferred in clades I1 and 12, clade 9 photobionts were found in the Cladonia
samples collected at lower altitudes (1,014-2,607 m asl; Fig. 4.3). The remaining
photobionts, found in Cladonia samples IH15, IH16, and IH 17 were inferred in
three separate clades. The photobiont of Cladonia coniocraea (IH15) belongs to
a very common species Asterochloris glomerata (clade 1). Two remaining photo-
bionts, found in lichens Cladonia pyxidata (IH16) and C. fruticulosa (IH17) were
inferred as members of clades 12 and 16, respectively.

5.2 Biogeography of Lichen Photobionts

During the last decade, biogeography of protists has become a highly controver-
sial topic. It has been postulated that the small size, extremely large populations,
and high dispersal potential of protists result in the cosmopolitan distribution of
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the vast majority of species (Finlay 2002; Finlay and Fenchel 2004). Conversely,
the limited geographical distributions has been implied by Foissner (1999), based
mainly on the observed restricted distribution of “flagship™ species, i.e., species
with easily recognizable morphologies whose presence/absence can be easily dem-
onstrated (Foissner 2006, 2008). However, all protistan biogeographic studies have
been based on the investigation of the free-living organisms.

Our study could bring valuable information about the distribution patterns of
symbiotic protists. So far, the investigations on Asterochloris photobionts were pre-
dominantly conducted on European and American lichen samples, only a few data
have been obtained from other continents (see Introduction). Therefore, addition
of more than 20 newly generated Asterochloris sequences obtained from Indian
Cladonia samples could improve the dataset for subsequent estimation of biogeo-
graphical patterns in lichen photobionts.

The biogeography of particular lichen photobiont clades is illustrated in Fig. 4.2.
Only those clades containing at least ten sequences with known origin were ana-
lyzed. In general, the majority of clades show wide (eurychoric) distribution, i.e.,
they were found in two or three continents. For example, Asterochloris glomerata,
the commonest species of the genus, display almost ubiquitous distribution. Ac-
cording to all published data so far, this species has been found in a number of
various lichen taxa (almost 50 species from genera Cladia, Cladonia, Stereocau-
lon, Pycnothelia, Diploschistes, Hertelidea) collected in many different places in
Europe, North America, and Asia. It has obviously wide ecological amplitude, oc-
curring in lichens growing on a variety of different substrates and in various mi-
croclimatic conditions. Nevertheless, all records of A. glomerata originate from
warm-temperate to (sub)arctic zones of northern hemisphere (similar to the clades
2,10, 11, 12, and 16).

In comparison to other photobiont lineages, the clade 9 has extraordinary distri-
bution pattern because of its absence in Europe (see Fig. 4.2). It is widely dispersed,
reported from South to North America and Asia, however, all records occurred be-
tween latitudes 25°S (Brazil, Parana) and 36°N (USA, North Carolina). Thus, the
algae from clade 9 probably prefer tropical to warm-temperate climate. This fact
could explain their absence in European samples (only warm Mediterranean regions
of Europe can comply with such criterion, however, they have been poorly investi-
gated for Asterochloris photobionts so far).

The earlier mentioned Asterochloris lineages exhibit wide distribution; nev-
ertheless, their habitat area seems to be more or less restricted. Our current data,
together with the results of Fernandez-Mendoza et al. (2011), Helms (2003),
Kroken and Taylor (2000), Muggia et al. (2008), and Peksa and Skaloud (2011)
suggest that one of the most important factors influencing the distribution of eu-
karyotic photobionts is climate. Such climatic preferences influence the type and
size of species habitat. There are reports on lineages of Trebouxia photobionts
occurring predominantly in tropical regions (Helms 2003), on the other hand,
other clades (haplotypes) exhibit polar (bipolar) distribution pattern (Fernandez-
Mendoza et al. 2011).



4 Photobiont Diversity in Indian Cladonia Lichens 69

Thus, it is obvious that at least some clades occur only in specific biomes or
latitudes in general, across different continents. It is a question whether there is
any photobiont lineage living in one continent or region only (endemic species).
According to our data, three clades seem to have rather restricted distribution.
Photobionts of clade 7 (30 samples) have been reported so far only from Europe.
Similarly, the clades I1 and I2 seem to be restricted to Asia (India). According to
Foissner (2006), the restricted distribution of protist species could be caused by
either historic, biological, climatic, or habitat factors. The biogeography of clades
7,11 and 12 cannot be affected by the limited dispersal of their fungal partners. Lep-
raria caesioalba and L. rigidula (mycobionts of clade 7 algae), as well as Cladonia
furcata, C. rangiferina and C. pyxidata (mycobionts of I1 and 12 algae) represent
lichens with very wide to cosmopolitan distribution (Smith et al. 2009) and many
of them disperse intensively via vegetative propagules (soredia, granules) which
provide a possibility of intensive dispersal of both mycobionts and photobionts.
Moreover, we cannot rule out the simple dispersal of photobionts independent of a
fungus. Asterochloris, a unicellular green alga, asexually reproducing by high num-
ber of aplanospores (Skaloud and Peksa 2010) has virtually unlimited dispersal ca-
pacity. It is well supported by its common distribution and ubiquity of the majority
of'its species. Therefore, the restricted distribution of photobiont clades 7, I1, and 12
cannot be explained by either historic or biological factors. More likely, the clades
are restricted in their distribution by having specific climatic or habitat preferences.
The clade 7 photobionts, so far reported only from Europe, have been recently dem-
onstrated to be significantly associated with ombrophobic lichens (i.e., growing in
fully rain-sheltered sites, where the vapour is the only available source of water)
growing predominantly on the bark of broadleaf trees in temperate belt. It is highly
probable that further investigation of photobiont diversity in bark-associated green-
algal lichens conducted in other continents than Europe would reveal much wider
distribution of this clade.

6 Conclusion

This study revealed significant photobiont diversity in Cladonia lichens collected in
India and Nepal. The discovery of two novel, not yet reported clades emphasizes the
large hidden diversity of lichen photobionts. Despite the fact that we investigated
symbiotic organisms, almost all Asterochloris lineages exhibit eurychoric distribu-
tion. We suppose that the existence of several Asterochloris clades so far reported
from single continent is affected by limited sampling and specific climatic or habitat
preferences rather than by restricted distribution patterns. It is increasingly evident
that the distinct preferences for environmental factors, not the dispersal barriers,
shape the global distribution patterns of lichen photobionts. Consequently, narrow
ecological preferences of lichen photobionts could to a certain extent determine the
distribution pattern of the entire lichen association.
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