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ABSTRACT

The distribution of microbial eukaryotes (protists) has been frequently discussed during the last two decades. The ubiquity
hypothesis assumes the lack of latitudinal gradients in protist diversity due to their unlimited global dispersal. In this
study, we examined the diversity and distribution of the very common, globally distributed green algal genus Klebsormidium
across climatic zones, focusing on the polar regions. We tested whether (i) there is comparable diversity among the polar
and temperate regions, and (ii) whether a spatial genetic differentiation occurs at the global scale. We collected a total of
58 Arctic, Antarctic and temperate strains, and genetically characterized them by sequencing the rbcL gene and two highly
variable chloroplast markers. Our analyses revealed the presence of two different distribution patterns which are supposed
to characterize both macroorganisms and protists. On the one hand, we demonstrated unlimited dispersal and intensive
gene flow within one of the inferred lineages (superclade B). On the other hand, the majority of Klebsormidium clades
showed rather a limited distribution. In addition, we detected a significant decrease of species richness towards the poles
i.e. the macroecological pattern typical for macroorganisms. Species within a single protist genus may thus exhibit highly
contrasting distribution patterns, based on their dispersal capabilities, which are usually shaped by both intrinsic and
extrinsic factors.
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INTRODUCTION

The distribution of microalgae is a major topic of modern mi-
crobial research (Caron 2009; Gast 2015). Two opposite hypothe-
ses have been proposed: the ubiquity model (Finlay, Esteban
and Fenchel 1996; Finlay 2002), which emphasizes the cos-
mopolitan distribution of protists; and the moderate endemic-
ity model (Foissner 1999, 2006), which admits the existence of

endemic species with limited distribution. Some authors pro-
posed that the small organism size, large population sizes and
high dispersal potential of eukaryotic microorganisms would
lead to high gene flow across large geographical scales, result-
ing in an ubiquitous species distribution in suitable environ-
ments (Finlay 2002; Fenchel and Finlay 2004). Large popula-
tion sizes would be expected to prevent local extinction and
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result in undisturbed population diversity (Fenchel and Finlay
2004), leading to high local genetic diversity (Mes 2008). In ad-
dition, intensive gene flow would constantly erase genetic di-
versity among populations, leading to a relatively low global
diversity and undifferentiated populations (Fenchel and Finlay
2004).

Another consequence of the ubiquity hypothesis is that, as
a result of global dispersal, latitudinal gradients in diversity
should be weak or absent once ecological controls are factored
out (Hillebrand and Azovsky 2001; Finlay and Fenchel 2004).
However, there are only a few studies testing the presence of
latitudinal gradients in eukaryotic microorganisms, moreover
they are largely incongruent. Whereas Hillebrand and Azovsky
(2001) showed that latitudinal gradients of species richness
are largely absent for diatoms and presumably also for other
unicellular and small multicellular organisms, the studies of
Vyverman et al. (2007) and Siver and Lott (2012) showed
these gradients on freshwater diatoms and silica-scaled chrys-
ophytes, respectively. On the contrary, large organisms like
plants and vertebrates show an obvious strong decrease of
species richness towards the poles (see overview in Huston
1994). In addition, there should be significant differences in di-
versity between the poles due to the contiguous nature of the
terrestrial Artic landmass with a temperate landmass at lower
latitudes. Conversely, terrestrial Antarctica is a large isolated
continent with small outlying sub-Antarctic islands. There, high
polar ecosystems are biologically unique, with a more central
role for bryophytes, lichens andmicrobial photoautotrophs over
that of vascular plants. The biggest diversity differences be-
tween the poles are known in vascular plantswhere 2218 species
are recorded for the Arctic, but just two species for Antarc-
tica (Pointing et al. 2015). Similar differences were also found in
bryophytes and lichens, which constitute the major plant cover
in the polar regions.Whereas ca 900mosses and liverworts have
been described from the Arctic (Walker et al. 2005), Antarctica
hosts only ca 125 species covering a small fraction of the to-
tal land area (Seppelt and Green 1998). For lichens, about 1750
species are known from the Artic, with 8%–10% of these species
being endemic (Dahlberg and Bultmann 2013). On the contrary,
ca 380 lichen species have been recorded in Antarctica (Øvstedal
and Smith 2001), with about 21% of these being endemic taxa
(Hertel 1988; Sancho et al. 1999).

Based on their cosmopolitan distribution and high disper-
sal, the diversity of microbial photoautotrophs should be com-
parable through the various regions (Pearce et al. 2009). Indeed,
the estimated total number of species occurring in the Arc-
tic was comparable to the diversity estimated for Antarctica
(Pointing et al. 2015). However, this assumption has never been
tested directly for whole microbial communities. Usually, the
composition of polar microbial flora has been investigated sep-
arately either in Antarctica (e.g. Seaburg et al. 1979; Broady 1986,
1996; Pankow, Haendel and Richter 1991; Broady and Smith 1994;
Mataloni, Tell andWynn-Williams 2000; Cavacini 2001; Fermani,
Mataloni and Van de Vijver 2007) or the Arctic region (Kaštovská
et al. 2005, 2007; Stibal, Šabacká and Kaštovská 2006; Matu�la et
al. 2007). Similarly, the currently available molecular data are
very fragmentary, consisting of a number of isolated taxonomic
and ecophysiological studies on individual taxa, such as var-
ious diatom species (Sabbe et al. 2003; Vyverman et al. 2010;
Souffreau et al. 2013), green algae (Lesser et al. 2002; Pocock et
al. 2004; Pichrtová et al. 2013; Pichrtová, Hájek and Elster 2014),
xanthophytes (Broady, Ohtani and Ingerfeld 1997; Rybalka et
al. 2009), ciliates (Petz et al. 2007), dinoflagellates (Montresor

et al. 2003; Rengefors et al. 2008, 2015; Rengefors, Logares and
Laybourn-Parry 2012) and lichen symbionts (Romeike et al. 2002;
Fernández-Menroza et al. 2011; Domaschke et al. 2012). The ma-
jority of studies suggested a bipolar distribution of the investi-
gated microautotrophs (Darling et al. 2000; Montresor et al. 2003;
Fernández-Menroza et al. 2011; Domaschke et al. 2012). However,
Petz et al. (2007) demonstrated that only 13% of ciliate species
showed a bipolar distribution. Strunecký, Elster and Komárek
(2010) even observed no similarities between the poles when in-
vestigating the diversity of the cyanobacterial genus Phormidium.
In the most recent evaluation of protist diversity in the polar re-
gions, Wolf et al. (2015) found a rather small overlap between the
Arctic and Antarctica, ranging from 5.5% to 14.5% depending on
the group investigated.

There is still a fruitful debate concerning the endemicity
of protist organisms in polar regions. For example, identical
cyanobacterial taxa have been reported from the Arctic, Antarc-
tica and alpine lakes (Jungblut et al. 2005), while the existence
of endemic species has been proposed within the cyanobac-
terial genus Phormidium (Strunecký, Elster and Komárek 2010).
Some polar cyanobacteria occupying highly cryptic habitats,
such as hypolithic substrates, may have been genetically iso-
lated for an evolutionarily long time (Bahl et al. 2011). In diatoms,
morphological studies suggested the existence of at least 40%
endemic taxa in some Antarctic areas (Schmidt, Mäusbacher
and Müller 1990; Sabbe et al. 2003). Currently, combined
molecular, ecological and morphological studies have indi-
cated far greater microbial endemism than previously assumed
(Vyverman et al. 2010). Souffreau et al. (2013) presumed that
cosmopolitan Antarctic diatom species are in fact species
complexes, possibly containing Antarctic endemics with low-
temperature preferences. However, in contrast to diatoms and
cyanobacteria, the green algal component of microbial mats has
remained virtually unstudied. The available data are largely re-
stricted to morphological taxonomic inventories on the conti-
nent, such as Victoria Land (Cavacini 2001; Adams et al. 2006),
the Antarctic Peninsula (Mataloni and Pose 2001) and maritime
Antarctica (Fermani, Mataloni and Van de Vijver 2007; Zidarova
2007). Broady (1996) suggested that the vast majority of Antarc-
tic terrestrial green algae are cosmopolitally distributed. How-
ever, this prediction has yet to be studied by modern molecular
techniques.

In this study, we examined the diversity and distribution
of the filamentous green algal genus Klebsormidium in the po-
lar regions. The genus Klebsormidium is very common and di-
verse in temperate zones (Rindi and Guiry 2004; Rindi, Guiry and
López-Bautista 2008; Rindi et al. 2011; Škaloud and Rindi 2013;
Mikhailyuk et al. 2015; Ryšánek, Hrčková and Škaloud 2015), but
data about its occurrence in polar regions are still very scarce.
The majority of its occurrence records comprises simple notes
about their presence in various algal assemblages (Mataloni, Tell
and Wynn-Williams 2000; Cavacini 2001; Kaštovská et al. 2005,
2007; Stibal, Šabacká and Kaštovská 2006; Fermani, Mataloni and
Van de Vijver 2007; Matu�la et al. 2007).

The general aim of this study was to test whether there ex-
ists comparable diversity among the polar and temperate re-
gions in green algal eukaryotic microorganisms. We used the
genus Klebsormidium as a model evolutionary lineage of ubiq-
uitous terrestrial protists. In addition, to test for the presence
of spatial genetic differentiation at the global scale, we in-
vestigated the population structure of a selected globally dis-
tributed lineage by sequencing fast evolving cpDNA molecular
markers.



Ryšánek et al. 3

MATERIALS AND METHODS
Sampling site and cultivation methods

During the period from 1989 to 2014, a total number of 12 expe-
ditions were organized to investigate the diversity of algae and
cyanobacteria in polar regions. Six expeditions were carried out
at different Arctic and Antarctic regions, respectively, resulting
in collecting over 500 samples in total (Table S1, Supporting In-
formation). All samples were cultivated on Petri dishes on 1.5%
agar supplemented with Bold’s basal medium (BBM; Starr and
Zeikus 1993). Detected Klebsormidium filaments were transferred
to Petri disheswith fresh BBMmedium. After three transfers, the
obtained cultures were observed to be unialgal by examination
under a lightmicroscope. Samples and unialgal stock cultures of
Klebsormidium were maintained in BBM at 15◦C under white flu-
orescent illumination of 30–50 μmol photons m−2 s−1 provided
by 18W cool tubes (Philips TLD 18W/33, the Netherlands), with a
light:dark (L:D) cycle of 14:10 h. For the purpose of the population
structure analysis, an additional 26 temperate strains belonging
to the superclade B sensu (Rindi et al. 2011) were isolated from
limestone and basalt rocks in the Czech Republic and Slovakia
(Table S2, Supporting Information).

Molecular analyses

A total of 32 Klebsormidium microcolonies (Table S2, Supporting
Information) were used in subsequent molecular analyses. DNA
was isolated according to the protocol published in Ryšánek,
Hrčková and Škaloud (2015), and stored at –20◦C. The sequences
of the rbcL gene, which encodes the large subunit of ribulose-
1,5-bisphosphate carboxylase/oxygenase, were obtained using
polymerase chain reaction (PCR) amplificationwith a Touchgene
Gradient cycler (Techne, UK). The rbcL gene was amplified using
the primers KF590 (5′-GAT GAAAAC GTA AAC TCT CAG C-3′) and
rbcL-KR2 (5′-GGT TGC CTT CGC GAG CTA-3′; Škaloud and Rindi
2013). Both primers were designed specifically to amplify Kleb-
sormidium species. Each 20 μL reaction for PCR was conducted
as described in Ryšánek, Hrčková and Škaloud (2015). The PCR
protocol followed that of Škaloud and Rindi (2013). Sequencing
reads were assembled and edited by using SeqAssem (Hepperle
2004).

For phylogenetic analyses, the newly obtained Klebsormidium
rbcL sequences were added to the sequences available in the
GenBank database to produce an alignment. The final alignment
was constructed using ClustalW (Thompson, Higgins and Gib-
son 1994) with MEGA 5.05 (Tamura et al. 2011). The aligned data
set was analysed by using Bayesian analysis (BI) with MrBayes
3.1.2 (Huelsenbeck and Ronquist 2001), maximum parsimony
(MP) analysis with PAUP 4.0b10 (Swofford 2002), and maximum
likelihood (ML) analysiswith GARLI (Zwickl 2006). The evolution-
ary model was determined by using PAUP/MrModeltest 2.3 (Ny-
lander 2004). The model selected under the Akaike Information
Criterion was GTR + I + G. The BI analysis was performed us-
ing the prior set as the default in MrBayes; the robustness of the
tree topologies was assessed by bootstrapping the data set as
described by Škaloud and Rindi (2013).

Population structure analyses

A total of 51 Klebsormidium strains belonging to the superclade B
sensu (Rindi et al. 2011) were subjected to the analysis of popula-
tion structure (Table S1, Supporting Information). Twomolecular
markers were selected based on the analysis of recently pub-
lished plastid genomes (Civáň et al. 2014; Hori et al. 2014), in-

cluding the plastid spacers atpE-trnM and ndhK-ndhC. The se-
quenceswere obtained by using PCR amplificationwith a Touch-
gene Gradient cycler (Techne, UK). The spacer atpE-trnM was
amplified by using the newly designed primers atpE F (5′-AGC
ATT TCG TCG TGC CAA AGC A-3′) and trnM R (5′-GGT TCA AAT
CCA AGT GCG ACC-3′). The spacer ndhK-ndhC was amplified
by the newly designed primers ndhK F (5′-GTC CCA TAA AGC
AAGGGC CA-3′) and ndhC R (5′-TGG AAT TGAGCC TGT GGGAG-
3′). Each 20 μL reaction for PCR was conducted as described in
Ryšánek, Hrčková and Škaloud (2015). PCR amplification of the
spacer atpE-trnM began with an initial denaturation at 95◦C for
2 min, followed by 35 cycles of denaturing at 94◦C for 1 min, an-
nealing at 58◦C for 1 min and elongation at 72◦C for 1.5 min,
with a final extension at 72◦C for 8 min. The amplification of the
spacer ndhK-ndhC began with an initial denaturation at 95◦C
for 2 min, followed by 35 cycles of denaturing at 94◦C for 1 min,
annealing at 56◦C for 1 min and elongation at 72◦C for 1.5 min,
with a final extension at 72◦C for 8 min. The PCR products were
quantified on a 1% agarose gel stained with ethidium bromide.
The purification and sequencingwere performed as described in
Škaloud and Rindi (2013). The sequencing reads were assembled
and edited by using SeqAssem (Hepperle 2004).

For illustrating the genetic diversity within the superclade
B, we constructed the haplotype networks on the basis of
ML analyses of the available sequences. The haplotype net-
work was made in Haplotype Viewer (G. Ewing; available at
www.cibiv.at/∼greg/haploviewer).

RESULTS
Analysis of molecular diversity

A total of 32 strains were isolated from the polar regions, includ-
ing 26 Arctic and six Antarctic strains. The overall diversity was
relatively low in comparison to the genetic diversity identified
in the temperate zone (Rindi et al. 2011; Škaloud and Rindi 2013;
Ryšánek, Hrčková and Škaloud 2015). In general, our molecular
investigations revealed the presence of eight genotypes belong-
ing to four distinct Klebsormidium lineages (Fig. 1), identified as
clades B, E1, E2 and E4 sensu (Rindi et al. 2011). The great ma-
jority of strains (77%) were inferred within clade B, consisting of
both Arctic and Antarctic isolates. The Arctic strain 818 inferred
within clade E1 was related to strain K44, isolated from a peat
bog in the Czech Republic (Škaloud and Rindi 2013). The three
Arctic isolates belonging to clade E2 (ELS2, ELS3 and ELS4) were
closely related to the members of lineage 4 sensu (Škaloud and
Rindi 2013), consisting of aerophytic, synanthrophic strains iso-
lated from Portugal, Germany, the Czech Republic and France.
The remaining three strains inferred within clade E3 formed
three separate genotypes. Whereas the two Antarctic strains
LUC4 and LUC5 were related to the European aerophytic strains
belonging to lineage 11 sensu (Škaloud and Rindi 2013), the Arc-
tic strain 302 was inferred in the vicinity of the Australian ter-
restrial strain TR18. However, the relationship and exact phylo-
genetic position of the strains belonging to clade E2 remained
unresolved by our analyses.

Population differentiation of the superclade B strains

To evaluate the intercontinental dispersal capabilities of the po-
lar Klebsormidium strains, we conducted a population-level in-
vestigation of all available strains belonging to superclade B i.e.
21 Arctic, 4 Antarctic,and 26 temperate strains. The superclade
B represents a well delimited species-level lineage exhibiting a
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Figure 1. Phylogenetic tree obtained from BI based on an rbcL dataset, showing the position of the investigated Klebsormidium strains and their relatives. Values at the
nodes indicate statistical support estimated by MrBayes posterior node probability (left), ML bootstrap (middle) and maximum parsimony bootstrap (right). The clade
labelling (A–G, E1–E6) follows Rindi et al. (2011), the numbering of clades within the superclade E (1–13) follows Škaloud and Rindi (2013).
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Figures 2 and 3. Haplotype genealogy from a ML tree of the spacer atpE-trnM (Fig. 2) and spacer ndhK-ndhC (Fig. 3), showing the relationship among haplotypes of
the three regions. The circles represent the individual haplotypes. The scale shown on the upper left side of the figure indicates the relationship between circle sizes
and the frequency of the haplotypes (numbers inside the circles specify the number of strains). Lines connecting the circles indicate a mutational step, and dots in

the lines represent putative mutational steps between the haplotypes.

very low genetic diversity among the investigated strains (Rindi
et al. 2011, Škaloud et al. 2014, Ryšánek, Hrčková and Škaloud
2015). Two highly variable, plastid-encoded spacers were used,
including the 691 bp long spacer atpE-trnM (51 strains), and the
698 bp long spacer ndhK-ndhC (37 strains). Analyses of DNA
variation in both sequenced spacers showed extensive sharing
of haplotypes among the biomes, indicating the absence of ge-
ographical population structuring due to unlimited gene flow.
A total of 23 different haplotypes were identified by analysis of
the atpE-trnM sequences, of which 19 were represented by a sin-
gle sequence only (Fig. 2). The most frequent haplotype had 20
records, containing 17 temperate and three Arctic strains. The
second most common haplotype had eight records, including
one Antarctic and seven Arctic strains.

The sequences of the spacer ndhK-ndhC were obtained for
a total of 37 strains, including 20 Arctic,four Antarctic, and 13
temperate strains. A total of 19 different haplotypes were iden-
tified, of which eight were represented by a single sequence
only (Fig. 3). Both of the two most common haplotypes (hav-
ing four records each) were found in the two different biomes

i.e. the Arctic-temperate and the Arctic-Antarctic regions. Hap-
lotype sharing was detected in two additional cases (Fig. 3).

DISCUSSION
Diversity and abundance in polar regions

The genus Klebsormidium is one of the most abundant microau-
totrophs in various terrestrial and aerophytic habitats (Ettl and
Gärtner 1995; Lokhorst 1996; John 2002, 2003). In fact, species
of this genus are regularly listed as among the most abun-
dant organisms found during diversity assessments of vari-
ous habitat types worldwide (e.g. Lukešová and Hoffmann 1996;
Neustupa 2001; Hoffmann, Ector and Kostikov 2007; Langhans,
Storm and Schwabe 2009; Škaloud 2009; Schulz et al. 2015). In-
deed, the recently published investigation of the Klebsormidium
phylogeographic structure revealed its ubiquitous distribution
on a global scale (Ryšánek, Hrčková and Škaloud 2015). All the
above-mentioned studies thus imply the high global dispersal
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and comparable diversity estimates of the genus Klebsormidium
through the various regions.

However, our investigation of newly isolated Klebsormidium
strains revealed a conspicuously low genetic diversity in the po-
lar regions as compared to the recently published DNA-based
diversity assessments. Based on the molecular investigations
of a number of isolated strains, Rindi et al. (2011) and Škaloud
and Rindi (2013) delimited a total of 22 well-supported clades
belonging to the seven major superclades A–G. In their evalu-
ation of Klebsormidium diversity in Northern temperate mixed
forests, Ryšánek, Hrčková and Škaloud (2015) found a total of 44
unique rbcL genotypes, indicating a very high genotypic diversity
in the dataset based on 15 sampling sites only. Most recently,
Mikhailyuk et al. (2015) detected more than 25 ITS rDNA geno-
types from 16 different localities in alpine soil crusts.

In contrast to the previously mentioned investigations, we
recovered a total of onlyeight rbcL genotypes. Such low genetic
diversity could be partly explained by a relatively small number
of investigated strains. However, the abundance of Klebsormid-
ium in polar regions is obviously very low, which makes very
hard to obtain a considerably greater amount of isolated strains.
In fact, despite our extensive sampling effort in both the Arc-
tic and Antarctica, only 32 strains were successfully isolated.
Indeed, the total number of samples we investigated (over 500)
greatly exceeded the number of sampling sites investigated by
both Ryšánek, Hrčková and Škaloud (2015) and Mikhailyuk et
al. (2015). We even failed to isolate a single Klebsormidium clone
in several samples, despite repeated inoculation of the sam-
ples to Petri dishes (Table S1, Supporting Information). Instead,
a high number of Xanthonema colonies were obtained, indicat-
ing the good preservation of algal communities but a very low,
undetectable abundance of Klebsormidium species in these sam-
ples. This low abundance is in concordance with many studies
which focused on terrestrial algal assemblages in both Antarc-
tica (Mataloni, Tell and Wynn-Williams 2000; Cavacini 2001;
Fermani, Mataloni and Van de Vijver 2007) and the Arctic
(Kaštovská et al. 2005, 2007; Stibal, Šabacká and Kaštovská 2006;
Matu�la et al. 2007). In these studies, Klebsormidium was usu-
ally reported as a rare taxon, exceeded in abundance by other
microautotrophs, such as Leptolyngbya, Phormidium, Xanthonema
and Chlorella.

Despite the above-mentioned low global abundance of Kleb-
sormidium in polar regions, we presume that the observed low
genetic diversity can only partly be attributed to the effect of
undersampling. Quite recently, Škaloud and Rindi (2013) inves-
tigated the ecological differentiation of Klebsormidium lineages
based on the genetic characterization of a number of strains,
including 27 newly isolated strains from the Czech Republic
(central Europe). Although the area of the Czech Republic is
incomparably smaller than that of polar regions, the genetic
characterization of strains revealed the presence of 13 different
genotypes belonging just into the single superclade E. Thus, us-
ing the comparable number of investigated strains (27 versus 32
strains), the diversity detected in a small temperate area signif-
icantly exceeds the total diversity found in both the Arctic and
Antarctica (13 versus. 8 genotypes). We therefore suppose that
the observed low genetic diversity might be rather attributable
to the overall low abundance of Klebsormidium in polar regions
(Vogt, Beisner and Prairie 2010).

Almost 80% of all polar Klebsormidium strains were inferred
within the cosmopolitan superclade B sensu (Rindi et al. 2011).
Interestingly, Mikhailyuk et al. (2015) reported this clade to grow
in higher altitudes, near and above the pine-forest line in alpine
regions. Such a distribution pattern, togetherwith the resistance

to both freezing and desiccation stresses reported for several
superclade B strains (Elster et al. 2008), suggest either a strong
adaptation of this lineage to polar environments or a preadap-
tation that developed in some strains, enabling them to partici-
pate in long-distance dispersal events, including to the poles.

Understanding the dispersal capacities

Considering its cosmopolitan distribution and predominance in
the polar regions, superclade B represents an ideal model for
testing the dispersal capabilities of microorganisms on a global
scale. To differentiate the particular populations, we sequenced
highly variable spacers between the chloroplast genes, amethod
frequently used in population structure assessment of higher
plants (Doorduin et al. 2011; Hollingsworth, Graham and Little
2011). Themost commonhaplotypeswere shared across the arc-
tic and temperate regions, indicating intensive gene flow and
global dispersal. Such a high dispersal capacity explains the
lack of differences in eco-physiological performance of seven
superclade B strains isolated from the Arctic (LUC9, LUC11 and
LUC14), Antarctica (LUC6, LUC7 and LUC8) and the temperate
zone (LUC2), as reported by Elster et al. (2008). Seemingly, the in-
tensive gene flow at a global scale may prevent adaptation of
populations to the local environment (Kawecki and Ebert 2004;
Whitaker 2006). However, our knowledge about local adaptation
mechanisms of protists is severely limited and needs further
investigations (Weisse 2008; Weisse et al. 2011; Rengefors et al.
2015).

While this population genetic investigation shows clear ev-
idence of a high dispersal capability of superclade B, the ab-
sence of several genotypes in the polar regions points to the re-
stricted distribution of the majority of Klebsormidium lineages.
Such a pattern supports the moderate endemicity model pro-
posed by the contemporary protistologist (Foissner 1999, 2006;
Gast 2015). Consequently, unlimited dispersal should be con-
siderably limited in the majority of the lineages. Although fila-
mentous, the great majority of Klebsormidium species easily dis-
integrate into fragments containing a few cells (Škaloud 2006).
These can then spread because of random events, such as hur-
ricanes or wind currents. Indeed, viable Klebsormidium cells have
been detected in lower troposphere air samples (Overeem 1937;
Sharma et al. 2007). Factors limiting dispersal should be then
connected to airborne survival, which is mainly affected by UV
radiation and desiccation (Isard and Gage 2001; Figuerola and
Green 2002; Sharma et al. 2007).

Various physiological studies demonstrated that terrestrial
algae have several mechanisms to provide protection and adap-
tation to high UV radiation, in particular by the accumulation of
mycosporine-like amino acids (MAAs; Holzinger and Lütz 2006;
Hughes 2006; Karsten, Lembcke and Schumann 2007; Pichrtová
et al. 2013; Karsten andHolzinger 2014). However, strains belong-
ing to superclade B had a lower content of MAAs in comparison
to the other Klebsormidium lineages (Kitzing and Karsten 2015),
excluding UV radiation as a crucial factor affecting the dispersal
capabilities. On the other hand, desiccation intolerance seems
to offer a promising explanation of the restricted distribution
of several Klebsormidium lineages, in particular those of super-
clade E. This clade has been recognized as the most common
worldwide, containing at least 14 distinct,mainly ubiquitous lin-
eages (Škaloud and Rindi 2013; Mikhailyuk et al. 2015; Ryšánek,
Hrčková and Škaloud 2015). However, the great majority of these
lineages are absent in the polar regions. Evaluation of their dis-
tribution patterns and ecology indicated that these lineages are
mainly restricted to humid and shaded habitats, or even to fresh
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waters (Škaloud and Rindi 2013; Mikhailyuk et al. 2015). Con-
sequently, ecophysiological experiments did not reveal a high
sensitivity to desiccation stress in several strains belonging to
superclade E (Karsten and Rindi 2010; Karsten and Holzinger
2012). We therefore hypothesize that dispersal capacities of par-
ticular Klebsormidium strains are mainly shaped by different
adaptations to desiccation stress during their airborne trans-
port.

Our investigation revealed that one of the most common
members of terrestrial algal communities in temperate regions,
the Streptophyte green algal genus Klebsormidium, exhibits two
different distribution patterns common to both macroorgan-
isms and protists. On the one hand, we demonstrated unlim-
ited dispersal and intensive gene flow proposed to character-
ize the ubiquitous distribution of protists (Montresor et al. 2003;
Petz et al. 2007). On the other hand, we showed a significant de-
crease of species richness towards the poles i.e. the distribu-
tion pattern typical for macroorganisms, such as higher plants
and vertebrates (Huston 1994). Therefore, the proposed distinc-
tion between the distribution patterns of protists and macroor-
ganisms (Hillebrand and Azovsky 2001; Fenchel and Finlay 2004)
cannot be generalized to all organisms. In fact, even the species
within a single genus may exhibit contrasting distribution pat-
terns, based on their dispersal capacities, which are shaped by
both intrinsic (e.g. adaptations to desiccation and UV) and ex-
trinsic factors (e.g. the availability of suitable habitats).
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biotopes in the Nature park Džbán (Central Bohemia, Czech
Republic) with special attention to the natural treeless
localities. Archiv für Hydrobiologie/Algological studies 2001;
101:109–20.

Nylander JAA. MrModeltest v2. 2004, http://www.abc.se/
∼nylander (12 March 2011, date last accessed).

Overeem MA. On green organisms occurring in the lower tropo-
sphere. Rec Trav Botan Neerl 1937;34:389–439.

Øvstedal DO, Smith RL. Lichens of Antarctica and South Georgia.
A Guide To Their Identification And Ecology. Cambridge: Cam-
bridge University Press, 2001.

Pankow H, Haendel D, Richter W. Die Algenflora der Schir-
macheroase (Ostantarktika). Beihefte zur Nova Hedwigia
1991;103:1–195.

Pearce DA, Bridge PD, Hughes KA et al. Microorganisms in the
atmosphere over Antarctica. FEMS Microbiol Ecol 2009;69:
143–57.

Petz W, Valbonesi A, Schiftner U et al. Ciliate biogeogra-
phy in Antarctic and Arctic freshwater ecosystems: en-
demism or global distribution of species? FEMS Microbiol Ecol
2007;59:396–408.

Pichrtová M, Hájek T, Elster J. Osmotic stress and recovery in
field populations of Zygnema sp. (Zygnematophyceae, Strep-
tophyta) on Svalbard (High Arctic) subjected to natural des-
iccation. FEMS Microbiol Ecol 2014;89:270–80.
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2009;9:65–80.
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